1j4x Citations

Structural basis for the recognition of a bisphosphorylated MAP kinase peptide by human VHR protein Phosphatase.

Biochemistry 41 3009-17 (2002)
Cited: 54 times
EuropePMC logo PMID: 11863439

Abstract

Human VHR (vaccinia H1 related phosphatase) is a member of the dual-specificity phosphatases (DSPs) that often act on bisphosphorylated protein substrates. Unlike most DSPs, VHR displays a strong preference for dephosphorylating phosphotyrosine residues over phosphothreonine residues. Here we describe the 2.75 A crystal structure of the C124S inactive VHR mutant in complex with a bisphosphorylated peptide corresponding to the MAP kinase activation lip. This structure and subsequent biochemical studies revealed the basis for the strong preference for hydrolyzing phosphotyrosine within bisphosphorylated substrates containing -pTXpY-. In the structure, the two phospho residues are oriented into distinct pockets; the phosphotyrosine is bound in the exposed yet deep active site cleft while the phosphothreonine is loosely tethered into a nearby basic pocket containing Arg(158). As this structure is the first substrate-enzyme complex reported for the DSP family of enzymes, these results provide the first glimpse into how DSPs bind their protein substrates.

Articles - 1j4x mentioned but not cited (13)

  1. Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Xiao J, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE. Proc Natl Acad Sci U S A 108 11860-11865 (2011)
  2. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases. Cui DS, Beaumont V, Ginther PS, Lipchock JM, Loria JP. J Mol Biol 429 2360-2372 (2017)
  3. Multidentate small-molecule inhibitors of vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells. Wu S, Vossius S, Rahmouni S, Miletic AV, Vang T, Vazquez-Rodriguez J, Cerignoli F, Arimura Y, Williams S, Hayes T, Moutschen M, Vasile S, Pellecchia M, Mustelin T, Tautz L. J Med Chem 52 6716-6723 (2009)
  4. Structure of human dual-specificity phosphatase 27 at 2.38 Å resolution. Lountos GT, Tropea JE, Waugh DS. Acta Crystallogr D Biol Crystallogr 67 471-479 (2011)
  5. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Gannam ZTK, Min K, Shillingford SR, Zhang L, Herrington J, Abriola L, Gareiss PC, Pantouris G, Tzouvelekis A, Kaminski N, Zhang X, Yu J, Jamali H, Ellman JA, Lolis E, Anderson KS, Bennett AM. Sci Signal 13 eaba3043 (2020)
  6. Specificity profiling of dual specificity phosphatase vaccinia VH1-related (VHR) reveals two distinct substrate binding modes. Luechapanichkul R, Chen X, Taha HA, Vyas S, Guan X, Freitas MA, Hadad CM, Pei D. J Biol Chem 288 6498-6510 (2013)
  7. Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids. Bobkova EV, Liu WH, Colayco S, Rascon J, Vasile S, Gasior C, Critton DA, Chan X, Dahl R, Su Y, Sergienko E, Chung TD, Mustelin T, Page R, Tautz L. ACS Med Chem Lett 2 113-118 (2011)
  8. Allosteric Impact of the Variable Insert Loop in Vaccinia H1-Related (VHR) Phosphatase. Beaumont VA, Reiss K, Qu Z, Allen B, Batista VS, Loria JP. Biochemistry 59 1896-1908 (2020)
  9. Crystal structure of the human dual specificity phosphatase 1 catalytic domain. Gumpena R, Lountos GT, Raran-Kurussi S, Tropea JE, Cherry S, Waugh DS. Protein Sci 27 561-567 (2018)
  10. Identification and structure-function analyses of an allosteric inhibitor of the tyrosine phosphatase PTPN22. Li K, Hou X, Li R, Bi W, Yang F, Chen X, Xiao P, Liu T, Lu T, Zhou Y, Tian Z, Shen Y, Zhang Y, Wang J, Fang H, Sun J, Yu X. J Biol Chem 294 8653-8663 (2019)
  11. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26. Won EY, Lee SO, Lee DH, Lee D, Bae KH, Lee SC, Kim SJ, Chi SW. PLoS One 11 e0162115 (2016)
  12. Structural and biochemical analysis of atypically low dephosphorylating activity of human dual-specificity phosphatase 28. Ku B, Hong W, Keum CW, Kim M, Ryu H, Jeon D, Shin HC, Kim JH, Kim SJ, Ryu SE. PLoS One 12 e0187701 (2017)
  13. Automated identification of binding sites for phosphorylated ligands in protein structures. Ghersi D, Sanchez R. Proteins 80 2347-2358 (2012)


Reviews citing this publication (7)

  1. Protein tyrosine phosphatases: from genes, to function, to disease. Tonks NK. Nat Rev Mol Cell Biol 7 833-846 (2006)
  2. Structure and regulation of MAPK phosphatases. Farooq A, Zhou MM. Cell Signal 16 769-779 (2004)
  3. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. Tonks NK. FEBS J 280 346-378 (2013)
  4. Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Pao LI, Badour K, Siminovitch KA, Neel BG. Annu Rev Immunol 25 473-523 (2007)
  5. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Lang R, Raffi FAM. Int J Mol Sci 20 E2710 (2019)
  6. VHR/DUSP3 phosphatase: structure, function and regulation. Pavic K, Duan G, Köhn M. FEBS J 282 1871-1890 (2015)
  7. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Tautz L, Senis YA, Oury C, Rahmouni S. Bioorg Med Chem 23 2786-2797 (2015)

Articles citing this publication (34)

  1. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. Gray CH, Good VM, Tonks NK, Barford D. EMBO J 22 3524-3535 (2003)
  2. Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Alonso A, Rahmouni S, Williams S, van Stipdonk M, Jaroszewski L, Godzik A, Abraham RT, Schoenberger SP, Mustelin T. Nat Immunol 4 44-48 (2003)
  3. Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Jeong DG, Kim SJ, Kim JH, Son JH, Park MR, Lim SM, Yoon TS, Ryu SE. J Mol Biol 345 401-413 (2005)
  4. Cutting edge: selective tyrosine dephosphorylation of interferon-activated nuclear STAT5 by the VHR phosphatase. Hoyt R, Zhu W, Cerignoli F, Alonso A, Mustelin T, David M. J Immunol 179 3402-3406 (2007)
  5. New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding. Zhang Q, Muller M, Chen CH, Zeng L, Farooq A, Zhou MM. J Mol Biol 354 777-788 (2005)
  6. Structural basis of substrate recognition by hematopoietic tyrosine phosphatase. Critton DA, Tortajada A, Stetson G, Peti W, Page R. Biochemistry 47 13336-13345 (2008)
  7. Vaccinia H1-related phosphatase is a phosphatase of ErbB receptors and is down-regulated in non-small cell lung cancer. Wang JY, Yeh CL, Chou HC, Yang CH, Fu YN, Chen YT, Cheng HW, Huang CY, Liu HP, Huang SF, Chen YR. J Biol Chem 286 10177-10184 (2011)
  8. The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. Alonso A, Burkhalter S, Sasin J, Tautz L, Bogetz J, Huynh H, Bremer MC, Holsinger LJ, Godzik A, Mustelin T. J Biol Chem 279 35768-35774 (2004)
  9. A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Liu X, Zhang CS, Lu C, Lin SC, Wu JW, Wang ZX. Nat Commun 7 10879 (2016)
  10. The family-wide structure and function of human dual-specificity protein phosphatases. Jeong DG, Wei CH, Ku B, Jeon TJ, Chien PN, Kim JK, Park SY, Hwang HS, Ryu SY, Park H, Kim DS, Kim SJ, Ryu SE. Acta Crystallogr D Biol Crystallogr 70 421-435 (2014)
  11. Adhesion regulation of stromal cell-derived factor-1 activation of ERK in lymphocytes by phosphatases. Laakko T, Juliano RL. J Biol Chem 278 31621-31628 (2003)
  12. Structure of human dual specificity protein phosphatase 23, VHZ, enzyme-substrate/product complex. Agarwal R, Burley SK, Swaminathan S. J Biol Chem 283 8946-8953 (2008)
  13. Deficiency in VHR/DUSP3, a suppressor of focal adhesion kinase, reveals its role in regulating cell adhesion and migration. Chen YR, Chou HC, Yang CH, Chen HY, Liu YW, Lin TY, Yeh CL, Chao WT, Tsou HH, Chuang HC, Tan TH. Oncogene 36 6509-6517 (2017)
  14. Identification and characterization of DUSP27, a novel dual-specific protein phosphatase. Friedberg I, Nika K, Tautz L, Saito K, Cerignoli F, Friedberg I, Godzik A, Mustelin T. FEBS Lett 581 2527-2533 (2007)
  15. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening. Kuznetsov VI, Hengge AC, Johnson SJ. Biochemistry 51 9869-9879 (2012)
  16. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution. Yokota T, Nara Y, Kashima A, Matsubara K, Misawa S, Kato R, Sugio S. Proteins 66 272-278 (2007)
  17. Molecular characterization of laforin, a dual-specificity protein phosphatase implicated in Lafora disease. Girard JM, Lê KH, Lederer F. Biochimie 88 1961-1971 (2006)
  18. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Kim SJ, Jeong DG, Yoon TS, Son JH, Cho SK, Ryu SE, Kim JH. Proteins 66 239-245 (2007)
  19. Crystal structure of human slingshot phosphatase 2. Jung SK, Jeong DG, Yoon TS, Kim JH, Ryu SE, Kim SJ. Proteins 68 408-412 (2007)
  20. Specificity profiling of protein phosphatases toward phosphoseryl and phosphothreonyl peptides. Xiao Q, Luechapanichkul R, Zhai Y, Pei D. J Am Chem Soc 135 9760-9767 (2013)
  21. Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1. Xu K, Li S, Yang W, Li K, Bai Y, Xu Y, Jin J, Wang Y, Bartlam M. PLoS One 10 e0124330 (2015)
  22. Expression analyses of Dusp22 (Dual-specificity phosphatase 22) in mouse tissues. Hamada N, Mizuno M, Tomita H, Iwamoto I, Hara A, Nagata KI. Med Mol Morphol 51 111-117 (2018)
  23. High-resolution crystal structure of the catalytic domain of human dual-specificity phosphatase 26. Won EY, Xie Y, Takemoto C, Chen L, Liu ZJ, Wang BC, Lee D, Woo EJ, Park SG, Shirouzu M, Yokoyama S, Kim SJ, Chi SW. Acta Crystallogr D Biol Crystallogr 69 1160-1170 (2013)
  24. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases. Zhao BM, Keasey SL, Tropea JE, Lountos GT, Dyas BK, Cherry S, Raran-Kurussi S, Waugh DS, Ulrich RG. PLoS One 10 e0134984 (2015)
  25. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes. Ku B, Keum CW, Lee HS, Yun HY, Shin HC, Kim BY, Kim SJ. Biochem Biophys Res Commun 478 1217-1222 (2016)
  26. Identification of the structural features that mediate binding specificity in the recognition of STAT proteins by dual-specificity phosphatases. Jardin C, Sticht H. J Biomol Struct Dyn 29 777-792 (2012)
  27. DUSP13B/TMDP inhibits stress-activated MAPKs and suppresses AP-1-dependent gene expression. Katagiri C, Masuda K, Nomura M, Tanoue K, Fujita S, Yamashita Y, Katakura R, Shiiba K, Nomura E, Sato M, Tanuma N, Shima H. Mol Cell Biochem 352 155-162 (2011)
  28. Regulation of dual specificity phosphatases in breast cancer during initial treatment with Herceptin: a Boolean model analysis. Buiga P, Elson A, Tabernero L, Schwartz JM. BMC Syst Biol 12 11 (2018)
  29. Crystal structure of a novel mitogen-activated protein kinase phosphatase, SKRP1. Wei CH, Ryu SY, Jeon YH, Yoon MY, Jeong DG, Kim SJ, Ryu SE. Proteins 79 3242-3246 (2011)
  30. Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease. Lountos GT, Tropea JE, Waugh DS. Mol Biochem Parasitol 187 1-8 (2013)
  31. DUSP3 regulates phosphorylation-mediated degradation of occludin and is required for maintaining epithelial tight junction. Chou HC, Cheng CM, Yang CH, Lin TY, Liu YW, Tan TH, Chen YR. J Biomed Sci 29 40 (2022)
  32. Identification of novel dual-specificity phosphatase 26 inhibitors by a hybrid virtual screening approach based on pharmacophore and molecular docking. Ren JX, Cheng Z, Huang YX, Zhao JF, Guo P, Zou ZM, Xie Y. Biomed Pharmacother 89 376-385 (2017)
  33. Letter A genetically encoded sulfotyrosine for VHR function research. Zheng Y, Lv X, Wang J. Protein Cell 4 731-734 (2013)
  34. Comment Switching off the switch. Selenko P, Sattler M. Structure 11 131-132 (2003)