1ias Citations

The TGF beta receptor activation process: an inhibitor- to substrate-binding switch.

Mol Cell 8 671-82 (2001)
Cited: 235 times
EuropePMC logo PMID: 11583628

Abstract

The type I TGF beta receptor (T beta R-I) is activated by phosphorylation of the GS region, a conserved juxtamembrane segment located just N-terminal to the kinase domain. We have studied the molecular mechanism of receptor activation using a homogeneously tetraphosphorylated form of T beta R-I, prepared using protein semisynthesis. Phosphorylation of the GS region dramatically enhances the specificity of T beta R-I for the critical C-terminal serines of Smad2. In addition, tetraphosphorylated T beta R-I is bound specifically by Smad2 in a phosphorylation-dependent manner and is no longer recognized by the inhibitory protein FKBP12. Thus, phosphorylation activates T beta R-I by switching the GS region from a binding site for an inhibitor into a binding surface for substrate. Our observations suggest that phosphoserine/phosphothreonine-dependent localization is a key feature of the T beta R-I/Smad activation process.

Reviews - 1ias mentioned but not cited (3)

  1. Protein Kinase Targets in Breast Cancer. García-Aranda M, Redondo M. Int J Mol Sci 18 E2543 (2017)
  2. Structural biology of betaglycan and endoglin, membrane-bound co-receptors of the TGF-beta family. Kim SK, Henen MA, Hinck AP. Exp Biol Med (Maywood) 244 1547-1558 (2019)
  3. Structure-guided engineering of TGF-βs for the development of novel inhibitors and probing mechanism. Hinck AP. Bioorg Med Chem 26 5239-5246 (2018)

Articles - 1ias mentioned but not cited (12)

  1. The ClusPro web server for protein-protein docking. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. Nat Protoc 12 255-278 (2017)
  2. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, Delai P, Fastnacht-Urban E, Forman SJ, Gillessen-Kaesbach G, Hoover-Fong J, Köster B, Pauli RM, Reardon W, Zaidi SA, Zasloff M, Morhart R, Mundlos S, Groppe J, Shore EM. Hum Mutat 30 379-390 (2009)
  3. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  4. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. Chaudhury S, Gray JJ. J Mol Biol 381 1068-1087 (2008)
  5. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Zhang L, Qu J, Qi Y, Duan Y, Huang YW, Zhou Z, Li P, Yao J, Huang B, Zhang S, Yu D. Nat Commun 13 2543 (2022)
  6. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kholodov Y, Ritchie DW, Vajda S, Kozakov D. Proc Natl Acad Sci U S A 113 E4286-93 (2016)
  7. Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking. Huang W, Ravikumar KM, Parisien M, Yang S. J Struct Biol 196 340-349 (2016)
  8. Crystal structure of activin receptor type IIB kinase domain from human at 2.0 Angstrom resolution. Han S, Loulakis P, Griffor M, Xie Z. Protein Sci 16 2272-2277 (2007)
  9. Peptide ligands that use a novel binding site to target both TGF-β receptors. Li L, Orner BP, Huang T, Hinck AP, Kiessling LL. Mol Biosyst 6 2392-2402 (2010)
  10. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  11. Polymodal allosteric regulation of Type 1 Serine/Threonine Kinase Receptors via a conserved electrostatic lock. Botello-Smith WM, Alsamarah A, Chatterjee P, Xie C, Lacroix JJ, Hao J, Luo Y. PLoS Comput Biol 13 e1005711 (2017)
  12. Specificity of broad protein interaction surfaces for proteins with multiple binding partners. Uchikoga N, Matsuzaki Y, Ohue M, Akiyama Y. Biophys Physicobiol 13 105-115 (2016)


Reviews citing this publication (101)

  1. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Shi Y, Massagué J. Cell 113 685-700 (2003)
  2. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Derynck R, Zhang YE. Nature 425 577-584 (2003)
  3. TGFβ signalling in context. Massagué J. Nat Rev Mol Cell Biol 13 616-630 (2012)
  4. Transforming growth factor-beta regulation of immune responses. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Annu Rev Immunol 24 99-146 (2006)
  5. Specificity and versatility in tgf-beta signaling through Smads. Feng XH, Derynck R. Annu Rev Cell Dev Biol 21 659-693 (2005)
  6. The conformational plasticity of protein kinases. Huse M, Kuriyan J. Cell 109 275-282 (2002)
  7. Roles of TGFbeta in metastasis. Padua D, Massagué J. Cell Res 19 89-102 (2009)
  8. The logic of TGFbeta signaling. Massagué J, Gomis RR. FEBS Lett 580 2811-2820 (2006)
  9. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Ceulemans H, Bollen M. Physiol Rev 84 1-39 (2004)
  10. Semisynthesis of proteins by expressed protein ligation. Muir TW. Annu Rev Biochem 72 249-289 (2003)
  11. TGF-β Signaling from Receptors to Smads. Hata A, Chen YG. Cold Spring Harb Perspect Biol 8 a022061 (2016)
  12. BMP signalling in skeletal development, disease and repair. Salazar VS, Gamer LW, Rosen V. Nat Rev Endocrinol 12 203-221 (2016)
  13. Brassinosteroid signal transduction from receptor kinases to transcription factors. Kim TW, Wang ZY. Annu Rev Plant Biol 61 681-704 (2010)
  14. Development of TGF-beta signalling inhibitors for cancer therapy. Yingling JM, Blanchard KL, Sawyer JS. Nat Rev Drug Discov 3 1011-1022 (2004)
  15. Specificity, versatility, and control of TGF-β family signaling. Derynck R, Budi EH. Sci Signal 12 eaav5183 (2019)
  16. Signaling Receptors for TGF-β Family Members. Heldin CH, Moustakas A. Cold Spring Harb Perspect Biol 8 a022053 (2016)
  17. FLT3: ITDoes matter in leukemia. Levis M, Small D. Leukemia 17 1738-1752 (2003)
  18. The transforming growth factor-beta superfamily of receptors. de Caestecker M. Cytokine Growth Factor Rev 15 1-11 (2004)
  19. The FHA domain. Durocher D, Jackson SP. FEBS Lett 513 58-66 (2002)
  20. Expanding the genetic code. Wang L, Schultz PG. Angew Chem Int Ed Engl 44 34-66 (2004)
  21. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu Rev Biochem 81 587-613 (2012)
  22. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Seoane J, Gomis RR. Cold Spring Harb Perspect Biol 9 a022277 (2017)
  23. 'Yin-Yang' functions of transforming growth factor-beta and T regulatory cells in immune regulation. Wan YY, Flavell RA. Immunol Rev 220 199-213 (2007)
  24. New regulatory mechanisms of TGF-beta receptor function. Kang JS, Liu C, Derynck R. Trends Cell Biol 19 385-394 (2009)
  25. Phospho-control of TGF-beta superfamily signaling. Wrighton KH, Lin X, Feng XH. Cell Res 19 8-20 (2009)
  26. Cellular and molecular basis for the regulation of inflammation by TGF-beta. Yoshimura A, Wakabayashi Y, Mori T. J Biochem 147 781-792 (2010)
  27. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Nawshad A, Lagamba D, Polad A, Hay ED. Cells Tissues Organs 179 11-23 (2005)
  28. TGF-β Signaling. Tzavlaki K, Moustakas A. Biomolecules 10 E487 (2020)
  29. TGFbeta signalling in control of T-cell-mediated self-reactivity. Rubtsov YP, Rudensky AY. Nat Rev Immunol 7 443-453 (2007)
  30. Inherited human diseases of heterotopic bone formation. Shore EM, Kaplan FS. Nat Rev Rheumatol 6 518-527 (2010)
  31. TGF-β: the sword, the wand, and the shield of FOXP3(+) regulatory T cells. Tran DQ. J Mol Cell Biol 4 29-37 (2012)
  32. Genetics of keloid scarring. Shih B, Bayat A. Arch Dermatol Res 302 319-339 (2010)
  33. Transforming Growth Factor-β: Master Regulator of the Respiratory System in Health and Disease. Aschner Y, Downey GP. Am J Respir Cell Mol Biol 54 647-655 (2016)
  34. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring. Finnson KW, McLean S, Di Guglielmo GM, Philip A. Adv Wound Care (New Rochelle) 2 195-214 (2013)
  35. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Nawshad A, LaGamba D, Hay ED. Arch Oral Biol 49 675-689 (2004)
  36. The chemical biology of protein phosphorylation. Tarrant MK, Cole PA. Annu Rev Biochem 78 797-825 (2009)
  37. Post-translational regulation of TGF-β receptor and Smad signaling. Xu P, Liu J, Derynck R. FEBS Lett 586 1871-1884 (2012)
  38. Chemical synthesis of proteins. Nilsson BL, Soellner MB, Raines RT. Annu Rev Biophys Biomol Struct 34 91-118 (2005)
  39. TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. Papageorgis P. J Oncol 2015 587193 (2015)
  40. Eph signaling: a structural view. Himanen JP, Nikolov DB. Trends Neurosci 26 46-51 (2003)
  41. TGF-beta and the Smad signal transduction pathway. Mehra A, Wrana JL. Biochem Cell Biol 80 605-622 (2002)
  42. Integration of the TGF-beta pathway into the cellular signalling network. Lutz M, Knaus P. Cell Signal 14 977-988 (2002)
  43. The roles for cytokines in the generation and maintenance of regulatory T cells. Wan YY, Flavell RA. Immunol Rev 212 114-130 (2006)
  44. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Tan AR, Alexe G, Reiss M. Breast Cancer Res Treat 115 453-495 (2009)
  45. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Linnerbauer M, Rothhammer V. Front Immunol 11 573256 (2020)
  46. Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate. Danielpour D. Eur J Cancer 41 846-857 (2005)
  47. Stromal Modulators of TGF-β in Cancer. Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. J Clin Med 6 E7 (2017)
  48. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  49. Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP). Shore EM, Kaplan FS. Bone 43 427-433 (2008)
  50. Interaction domains: from simple binding events to complex cellular behavior. Pawson T, Raina M, Nash P. FEBS Lett 513 2-10 (2002)
  51. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. Krupa A, Preethi G, Srinivasan N. J Mol Biol 339 1025-1039 (2004)
  52. Fibrodysplasia ossificans progressiva: mechanisms and models of skeletal metamorphosis. Kaplan FS, Chakkalakal SA, Shore EM. Dis Model Mech 5 756-762 (2012)
  53. Chemoenzymatic Semisynthesis of Proteins. Thompson RE, Muir TW. Chem Rev 120 3051-3126 (2020)
  54. Schistosoma mansoni: TGF-beta signaling pathways. Loverde PT, Osman A, Hinck A. Exp Parasitol 117 304-317 (2007)
  55. Oligomeric interactions of TGF-β and BMP receptors. Ehrlich M, Gutman O, Knaus P, Henis YI. FEBS Lett 586 1885-1896 (2012)
  56. The Smad Dependent TGF-β and BMP Signaling Pathway in Bone Remodeling and Therapies. Zou ML, Chen ZH, Teng YY, Liu SY, Jia Y, Zhang KW, Sun ZL, Wu JJ, Yuan ZD, Feng Y, Li X, Xu RS, Yuan FL. Front Mol Biosci 8 593310 (2021)
  57. Protein semisynthesis and expressed protein ligation: chasing a protein's tail. Schwarzer D, Cole PA. Curr Opin Chem Biol 9 561-569 (2005)
  58. Connection between inflammation and carcinogenesis in gastrointestinal tract: focus on TGF-beta signaling. Hong S, Lee HJ, Kim SJ, Hahm KB. World J Gastroenterol 16 2080-2093 (2010)
  59. Skeletal metamorphosis in fibrodysplasia ossificans progressiva (FOP). Kaplan FS, Shen Q, Lounev V, Seemann P, Groppe J, Katagiri T, Pignolo RJ, Shore EM. J Bone Miner Metab 26 521-530 (2008)
  60. Posttranslational Regulation of Smads. Xu P, Lin X, Feng XH. Cold Spring Harb Perspect Biol 8 a022087 (2016)
  61. The brassinosteroid signal transduction pathway. Wang ZY, Wang Q, Chong K, Wang F, Wang L, Bai M, Jia C. Cell Res 16 427-434 (2006)
  62. Chemical Methods for Encoding and Decoding of Posttranslational Modifications. Chuh KN, Batt AR, Pratt MR. Cell Chem Biol 23 86-107 (2016)
  63. The FOP metamorphogene encodes a novel type I receptor that dysregulates BMP signaling. Kaplan FS, Pignolo RJ, Shore EM. Cytokine Growth Factor Rev 20 399-407 (2009)
  64. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Chaikuad A, Bullock AN. Cold Spring Harb Perspect Biol 8 a022111 (2016)
  65. The beginning of the end: death signaling in early involution. Baxter FO, Neoh K, Tevendale MC. J Mammary Gland Biol Neoplasia 12 3-13 (2007)
  66. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Jann J, Gascon S, Roux S, Faucheux N. Int J Mol Sci 21 E7597 (2020)
  67. The immune suppressive function of transforming growth factor-β (TGF-β) in human diseases. Sheng J, Chen W, Zhu HJ. Growth Factors 33 92-101 (2015)
  68. An evolutionary and structural perspective on T cell antigen receptor function. Malissen B. Immunol Rev 191 7-27 (2003)
  69. Elucidation of XA21-mediated innate immunity. Park CJ, Han SW, Chen X, Ronald PC. Cell Microbiol 12 1017-1025 (2010)
  70. Expressed protein ligation: a resourceful tool to study protein structure and function. Berrade L, Camarero JA. Cell Mol Life Sci 66 3909-3922 (2009)
  71. Granting immunity to FOP and catching heterotopic ossification in the Act. Kaplan FS, Pignolo RJ, Shore EM. Semin Cell Dev Biol 49 30-36 (2016)
  72. Recent advances in the application of expressed protein ligation to protein engineering. Hofmann RM, Muir TW. Curr Opin Biotechnol 13 297-303 (2002)
  73. Receptor binding competition: A paradigm for regulating TGF-β family action. Martinez-Hackert E, Sundan A, Holien T. Cytokine Growth Factor Rev 57 39-54 (2021)
  74. Common mutations in ALK2/ACVR1, a multi-faceted receptor, have roles in distinct pediatric musculoskeletal and neural orphan disorders. Pacifici M, Shore EM. Cytokine Growth Factor Rev 27 93-104 (2016)
  75. Protein semi-synthesis: new proteins for functional and structural studies. Durek T, Becker CF. Biomol Eng 22 153-172 (2005)
  76. Molecular mechanism of TGF-β signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy. Ramamoorthi G, Sivalingam N. Tumour Biol 35 7295-7305 (2014)
  77. ACVR1 Function in Health and Disease. Valer JA, Sánchez-de-Diego C, Pimenta-Lopes C, Rosa JL, Ventura F. Cells 8 E1366 (2019)
  78. Structural perspective of BMP ligands and signaling. Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Bone 140 115549 (2020)
  79. The role of TGFβ in hematopoiesis and myeloid disorders. Bataller A, Montalban-Bravo G, Soltysiak KA, Garcia-Manero G. Leukemia 33 1076-1089 (2019)
  80. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Rezaei HB, Kamato D, Ansari G, Osman N, Little PJ. Clin Exp Pharmacol Physiol 39 661-667 (2012)
  81. A new era for fibrodysplasia ossificans progressiva: a druggable target for the second skeleton. Kaplan FS, Glaser DL, Pignolo RJ, Shore EM. Expert Opin Biol Ther 7 705-712 (2007)
  82. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Galat A. Cell Mol Life Sci 70 3243-3275 (2013)
  83. Role of altered signal transduction in heterotopic ossification and fibrodysplasia ossificans progressiva. Shore EM, Kaplan FS. Curr Osteoporos Rep 9 83-88 (2011)
  84. TGF-β signaling in health and disease. Massagué J, Sheppard D. Cell 186 4007-4037 (2023)
  85. The Interplay Between TGF-β Signaling and Cell Metabolism. Liu H, Chen YG. Front Cell Dev Biol 10 846723 (2022)
  86. Structural biology of the TGFβ family. Goebel EJ, Hart KN, McCoy JC, Thompson TB. Exp Biol Med (Maywood) 244 1530-1546 (2019)
  87. Chemical strategies for controlling protein folding and elucidating the molecular mechanisms of amyloid formation and toxicity. Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA. J Mol Biol 421 204-236 (2012)
  88. The TGF-beta--Smad network: introducing bioinformatic tools. Kloos DU, Choi C, Wingender E. Trends Genet 18 96-103 (2002)
  89. Novel FLT3 tyrosine kinase inhibitors. Levis M, Small D. Expert Opin Investig Drugs 12 1951-1962 (2003)
  90. Transforming growth factor β latency: A mechanism of cytokine storage and signalling regulation in liver homeostasis and disease. Li Y, Fan W, Link F, Wang S, Dooley S. JHEP Rep 4 100397 (2022)
  91. Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease. Yeung W, Ruan Z, Kannan N. IUBMB Life 72 1189-1202 (2020)
  92. Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Dantonio PM, Klein MO, Freire MRVB, Araujo CN, Chiacetti AC, Correa RG. Biosci Rep 38 BSR20180511 (2018)
  93. Regulatory T Cells in Autoimmune Vasculitis. Jin K, Parreau S, Warrington KJ, Koster MJ, Berry GJ, Goronzy JJ, Weyand CM. Front Immunol 13 844300 (2022)
  94. SMADS-Mediate Molecular Mechanisms in Sjögren's Syndrome. Sisto M, Ribatti D, Lisi S. Int J Mol Sci 22 3203 (2021)
  95. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Kleiser S, Nyström A. Biomolecules 10 E1170 (2020)
  96. Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression-Underestimated Target of Anticancer Strategies. Zakrzewski PK. J Clin Med 10 3900 (2021)
  97. Recent progress in drug development for fibrodysplasia ossificans progressiva. Meng X, Wang H, Hao J. Mol Cell Biochem 477 2327-2334 (2022)
  98. The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Ponomarev LC, Ksiazkiewicz J, Staring MW, Luttun A, Zwijsen A. Int J Mol Sci 22 6364 (2021)
  99. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Cate RL. Front Endocrinol (Lausanne) 13 905324 (2022)
  100. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Duminuco A, Chifotides HT, Giallongo S, Giallongo C, Tibullo D, Palumbo GA. Cancers (Basel) 16 154 (2023)
  101. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Brown MA, Ried T. Cancers (Basel) 14 784 (2022)

Articles citing this publication (119)

  1. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS. Nat Genet 38 525-527 (2006)
  2. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA. Mol Pharmacol 62 58-64 (2002)
  3. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Chen CR, Kang Y, Siegel PM, Massagué J. Cell 110 19-32 (2002)
  4. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Nühse TS, Stensballe A, Jensen ON, Peck SC. Plant Cell 16 2394-2405 (2004)
  5. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD. Plant Cell 17 1685-1703 (2005)
  6. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. Harrison RE, Flanagan JA, Sankelo M, Abdalla SA, Rowell J, Machado RD, Elliott CG, Robbins IM, Olschewski H, McLaughlin V, Gruenig E, Kermeen F, Halme M, Räisänen-Sokolowski A, Laitinen T, Morrell NW, Trembath RC. J Med Genet 40 865-871 (2003)
  7. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massagué J, Shi Y. Mol Cell 8 1277-1289 (2001)
  8. A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Aragón E, Goerner N, Zaromytidou AI, Xi Q, Escobedo A, Massagué J, Macias MJ. Genes Dev 25 1275-1288 (2011)
  9. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. Xu L, Kang Y, Cöl S, Massagué J. Mol Cell 10 271-282 (2002)
  10. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Peng Y, Bartley LE, Chen X, Dardick C, Chern M, Ruan R, Canlas PE, Ronald PC. Mol Plant 1 446-458 (2008)
  11. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Qin BY, Liu C, Lam SS, Srinath H, Delston R, Correia JJ, Derynck R, Lin K. Nat Struct Biol 10 913-921 (2003)
  12. The fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMP-independent chondrogenesis and zebrafish embryo ventralization. Shen Q, Little SC, Xu M, Haupt J, Ast C, Katagiri T, Mundlos S, Seemann P, Kaplan FS, Mullins MC, Shore EM. J Clin Invest 119 3462-3472 (2009)
  13. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Li J, Williams BL, Haire LF, Goldberg M, Wilker E, Durocher D, Yaffe MB, Jackson SP, Smerdon SJ. Mol Cell 9 1045-1054 (2002)
  14. TGF-beta and regulatory T cell in immunity and autoimmunity. Wan YY, Flavell RA. J Clin Immunol 28 647-659 (2008)
  15. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Mahimainathan L, Das F, Venkatesan B, Choudhury GG. Diabetes 55 2115-2125 (2006)
  16. Regulation of TGF-β receptor activity. Huang F, Chen YG. Cell Biosci 2 9 (2012)
  17. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. Chaikuad A, Alfano I, Kerr G, Sanvitale CE, Boergermann JH, Triffitt JT, von Delft F, Knapp S, Knaus P, Bullock AN. J Biol Chem 287 36990-36998 (2012)
  18. PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Zheng D, Chen G, Guo B, Cheng G, Tang H. Cell Res 18 1105-1113 (2008)
  19. Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Süring K, Majewski F, Tinschert S, Grzeschik KH, Müller D, Knaus P, Nürnberg P, Mundlos S. Proc Natl Acad Sci U S A 100 12277-12282 (2003)
  20. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. Bolger GB, Peden AH, Steele MR, MacKenzie C, McEwan DG, Wallace DA, Huston E, Baillie GS, Houslay MD. J Biol Chem 278 33351-33363 (2003)
  21. Ablation of Smurf2 reveals an inhibition in TGF-β signalling through multiple mono-ubiquitination of Smad3. Tang LY, Yamashita M, Coussens NP, Tang Y, Wang X, Li C, Deng CX, Cheng SY, Zhang YE. EMBO J 30 4777-4789 (2011)
  22. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, Onozaki K, Hayashi H. Oncogene 26 500-508 (2007)
  23. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Qin BY, Lam SS, Correia JJ, Lin K. Genes Dev 16 1950-1963 (2002)
  24. Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. Sawyer JS, Beight DW, Britt KS, Anderson BD, Campbell RM, Goodson T, Herron DK, Li HY, McMillen WT, Mort N, Parsons S, Smith EC, Wagner JR, Yan L, Zhang F, Yingling JM. Bioorg Med Chem Lett 14 3581-3584 (2004)
  25. Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2. Song K, Cornelius SC, Reiss M, Danielpour D. J Biol Chem 278 38342-38351 (2003)
  26. Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. Bolduc D, Rahdar M, Tu-Sekine B, Sivakumaren SC, Raben D, Amzel LM, Devreotes P, Gabelli SB, Cole P. Elife 2 e00691 (2013)
  27. X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Dar AC, Sicheri F. Mol Cell 10 295-305 (2002)
  28. Mutational analysis of the ACVR1 gene in Italian patients affected with fibrodysplasia ossificans progressiva: confirmations and advancements. Bocciardi R, Bordo D, Di Duca M, Di Rocco M, Ravazzolo R. Eur J Hum Genet 17 311-318 (2009)
  29. Structural basis of Smad1 activation by receptor kinase phosphorylation. Qin BY, Chacko BM, Lam SS, de Caestecker MP, Correia JJ, Lin K. Mol Cell 8 1303-1312 (2001)
  30. Local BMP receptor activation at adherens junctions in the Drosophila germline stem cell niche. Michel M, Raabe I, Kupinski AP, Pérez-Palencia R, Bökel C. Nat Commun 2 415 (2011)
  31. Inhibition of breast cancer metastases by a novel inhibitor of TGFβ receptor 1. Fang Y, Chen Y, Yu L, Zheng C, Qi Y, Li Z, Yang Z, Zhang Y, Shi T, Luo J, Liu M. J Natl Cancer Inst 105 47-58 (2013)
  32. Raptor-rictor axis in TGFbeta-induced protein synthesis. Das F, Ghosh-Choudhury N, Mahimainathan L, Venkatesan B, Feliers D, Riley DJ, Kasinath BS, Choudhury GG. Cell Signal 20 409-423 (2008)
  33. Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Ricard N, Bidart M, Mallet C, Lesca G, Giraud S, Prudent R, Feige JJ, Bailly S. Blood 116 1604-1612 (2010)
  34. Smad3 mediates TGF-beta1 induction of VEGF production in lung fibroblasts. Kobayashi T, Liu X, Wen FQ, Fang Q, Abe S, Wang XQ, Hashimoto M, Shen L, Kawasaki S, Kim HJ, Kohyama T, Rennard SI. Biochem Biophys Res Commun 327 393-398 (2005)
  35. miR-582-3p and miR-582-5p Suppress Prostate Cancer Metastasis to Bone by Repressing TGF-β Signaling. Huang S, Zou C, Tang Y, Wa Q, Peng X, Chen X, Yang C, Ren D, Huang Y, Liao Z, Huang S, Zou X, Pan J. Mol Ther Nucleic Acids 16 91-104 (2019)
  36. Extracellular matrix-induced transforming growth factor-beta receptor signaling dynamics. Garamszegi N, Garamszegi SP, Samavarchi-Tehrani P, Walford E, Schneiderbauer MM, Wrana JL, Scully SP. Oncogene 29 2368-2380 (2010)
  37. Functional modeling of the ACVR1 (R206H) mutation in FOP. Groppe JC, Shore EM, Kaplan FS. Clin Orthop Relat Res 462 87-92 (2007)
  38. Tyrosine phosphorylation acts as a molecular switch to full-scale activation of the eIF2alpha RNA-dependent protein kinase. Su Q, Wang S, Baltzis D, Qu LK, Wong AH, Koromilas AE. Proc Natl Acad Sci U S A 103 63-68 (2006)
  39. Sequence comparison by sequence harmony identifies subtype-specific functional sites. Pirovano W, Feenstra KA, Heringa J. Nucleic Acids Res 34 6540-6548 (2006)
  40. TGF-beta 1 signaling controls retinal pericyte contractile protein expression. Sieczkiewicz GJ, Herman IM. Microvasc Res 66 190-196 (2003)
  41. Tyrosine phosphorylation-dependent PI 3 kinase/Akt signal transduction regulates TGFbeta-induced fibronectin expression in mesangial cells. Ghosh Choudhury G, Abboud HE. Cell Signal 16 31-41 (2004)
  42. Novel mutations in ACVR1 result in atypical features in two fibrodysplasia ossificans progressiva patients. Petrie KA, Lee WH, Bullock AN, Pointon JJ, Smith R, Russell RG, Brown MA, Wordsworth BP, Triffitt JT. PLoS One 4 e5005 (2009)
  43. A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. Chen X, Chern M, Canlas PE, Jiang C, Ruan D, Cao P, Ronald PC. J Biol Chem 285 10454-10463 (2010)
  44. In vitro analyses of the dysregulated R206H ALK2 kinase-FKBP12 interaction associated with heterotopic ossification in FOP. Groppe JC, Wu J, Shore EM, Kaplan FS. Cells Tissues Organs 194 291-295 (2011)
  45. Disease-associated mutations in conserved residues of ALK-1 kinase domain. Abdalla SA, Cymerman U, Johnson RM, Deber CM, Letarte M. Eur J Hum Genet 11 279-287 (2003)
  46. Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Karlova R, Boeren S, van Dongen W, Kwaaitaal M, Aker J, Vervoort J, de Vries S. Proteomics 9 368-379 (2009)
  47. Copy number gain of ZEB1 mediates a double-negative feedback loop with miR-33a-5p that regulates EMT and bone metastasis of prostate cancer dependent on TGF-β signaling. Dai Y, Wu Z, Lang C, Zhang X, He S, Yang Q, Guo W, Lai Y, Du H, Peng X, Ren D. Theranostics 9 6063-6079 (2019)
  48. Smad inhibition by the Ste20 kinase Misshapen. Kaneko S, Chen X, Lu P, Yao X, Wright TG, Rajurkar M, Kariya K, Mao J, Ip YT, Xu L. Proc Natl Acad Sci U S A 108 11127-11132 (2011)
  49. Synthesis and biological evaluation of novel 2-pyridinyl-[1,2,3]triazoles as inhibitors of transforming growth factor beta 1 type 1 receptor. Kim DK, Kim J, Park HJ. Bioorg Med Chem Lett 14 2401-2405 (2004)
  50. Direct interaction between Smad3, APC10, CDH1 and HEF1 in proteasomal degradation of HEF1. Nourry C, Maksumova L, Pang M, Liu X, Wang T. BMC Cell Biol 5 20 (2004)
  51. Hyperactive BMP signaling induced by ALK2(R206H) requires type II receptor function in a Drosophila model for classic fibrodysplasia ossificans progressiva. Le VQ, Wharton KA. Dev Dyn 241 200-214 (2012)
  52. Structure of the pseudokinase domain of BIR2, a regulator of BAK1-mediated immune signaling in Arabidopsis. Blaum BS, Mazzotta S, Nöldeke ER, Halter T, Madlung J, Kemmerling B, Stehle T. J Struct Biol 186 112-121 (2014)
  53. Identifying inhibitors of epithelial-mesenchymal transition by connectivity map-based systems approach. Reka AK, Kuick R, Kurapati H, Standiford TJ, Omenn GS, Keshamouni VG. J Thorac Oncol 6 1784-1792 (2011)
  54. Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1). Liu J, Johnson K, Li J, Piamonte V, Steffy BM, Hsieh MH, Ng N, Zhang J, Walker JR, Ding S, Muneoka K, Wu X, Glynne R, Schultz PG. Proc Natl Acad Sci U S A 108 14560-14565 (2011)
  55. ACVR1 p.Q207E causes classic fibrodysplasia ossificans progressiva and is functionally distinct from the engineered constitutively active ACVR1 p.Q207D variant. Haupt J, Deichsel A, Stange K, Ast C, Bocciardi R, Ravazzolo R, Di Rocco M, Ferrari P, Landi A, Kaplan FS, Shore EM, Reissner C, Seemann P. Hum Mol Genet 23 5364-5377 (2014)
  56. The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes. Colucci S, Pagani A, Pettinato M, Artuso I, Nai A, Camaschella C, Silvestri L. Blood 130 2111-2120 (2017)
  57. NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase. Lee GI, Ding Z, Walker JC, Van Doren SR. Proc Natl Acad Sci U S A 100 11261-11266 (2003)
  58. The role of TGF-β2 in cartilage development and diseases. Duan M, Wang Q, Liu Y, Xie J. Bone Joint Res 10 474-487 (2021)
  59. Transforming growth factor-Beta and urokinase-type plasminogen activator: dangerous partners in tumorigenesis-implications in skin cancer. Santibanez JF. ISRN Dermatol 2013 597927 (2013)
  60. Requirements for peptidyl-prolyl isomerization activity: a comprehensive mutational analysis of the substrate-binding cavity of FK506-binding protein 12. Ikura T, Ito N. Protein Sci 16 2618-2625 (2007)
  61. The Fibrodysplasia Ossificans Progressiva (FOP) mutation p.R206H in ACVR1 confers an altered ligand response. Hildebrand L, Stange K, Deichsel A, Gossen M, Seemann P. Cell Signal 29 23-30 (2017)
  62. TGF-beta receptor-binding proteins: complex interactions. Runyan CE, Poncelet AC, Schnaper HW. Cell Signal 18 2077-2088 (2006)
  63. Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling. Huang S, Wa Q, Pan J, Peng X, Ren D, Li Q, Dai Y, Yang Q, Huang Y, Zhang X, Zhou W, Yuan D, Cao J, Li Y, He P, Tang Y. Cell Death Dis 9 779 (2018)
  64. Autoinhibition and autoactivation of the DNA replication checkpoint kinase Cds1. Xu YJ, Kelly TJ. J Biol Chem 284 16016-16027 (2009)
  65. Selective inhibitors of type I receptor kinase block cellular transforming growth factor-beta signaling. Ge R, Rajeev V, Subramanian G, Reiss KA, Liu D, Higgins L, Joly A, Dugar S, Chakravarty J, Henson M, McEnroe G, Schreiner G, Reiss M. Biochem Pharmacol 68 41-50 (2004)
  66. TGF-beta1 and serum both stimulate contraction but differentially affect apoptosis in 3D collagen gels. Kobayashi T, Liu X, Kim HJ, Kohyama T, Wen FQ, Abe S, Fang Q, Zhu YK, Spurzem JR, Bitterman P, Rennard SI. Respir Res 6 141 (2005)
  67. Variable signaling activity by FOP ACVR1 mutations. Haupt J, Xu M, Shore EM. Bone 109 232-240 (2018)
  68. A role for schwann cells in the neuroregenerative effects of a non-immunosuppressive fk506 derivative, jnj460. Birge RB, Wadsworth S, Akakura R, Abeysinghe H, Kanojia R, MacIelag M, Desbarats J, Escalante M, Singh K, Sundarababu S, Parris K, Childs G, August A, Siekierka J, Weinstein DE. Neuroscience 124 351-366 (2004)
  69. Coated pit-mediated endocytosis of the type I transforming growth factor-β (TGF-β) receptor depends on a di-leucine family signal and is not required for signaling. Shapira KE, Gross A, Ehrlich M, Henis YI. J Biol Chem 287 26876-26889 (2012)
  70. Congress Meeting report: signaling schemes for TGF-beta. Roberts AB, Derynck R. Sci STKE 2001 pe43 (2001)
  71. Protein phosphorylation by semisynthesis: from paper to practice. Szewczuk LM, Tarrant MK, Cole PA. Methods Enzymol 462 1-24 (2009)
  72. The orphan GPR50 receptor promotes constitutive TGFβ receptor signaling and protects against cancer development. Wojciech S, Ahmad R, Belaid-Choucair Z, Journé AS, Gallet S, Dam J, Daulat A, Ndiaye-Lobry D, Lahuna O, Karamitri A, Guillaume JL, Do Cruzeiro M, Guillonneau F, Saade A, Clément N, Courivaud T, Kaabi N, Tadagaki K, Delagrange P, Prévot V, Hermine O, Prunier C, Jockers R. Nat Commun 9 1216 (2018)
  73. Crystal structures of apo and inhibitor-bound TGFβR2 kinase domain: insights into TGFβR isoform selectivity. Tebben AJ, Ruzanov M, Gao M, Xie D, Kiefer SE, Yan C, Newitt JA, Zhang L, Kim K, Lu H, Kopcho LM, Sheriff S. Acta Crystallogr D Struct Biol 72 658-674 (2016)
  74. Differential activation of Smads in HeLa and SiHa cells that differ in their response to transforming growth factor-beta. Maliekal TT, Anto RJ, Karunagaran D. J Biol Chem 279 36287-36292 (2004)
  75. PhosphoThr peptide binding globally rigidifies much of the FHA domain from Arabidopsis receptor kinase-associated protein phosphatase. Ding Z, Lee GI, Liang X, Gallazzi F, Arunima A, Van Doren SR. Biochemistry 44 10119-10134 (2005)
  76. News TGF-beta signaling from a three-dimensional perspective: insight into selection of partners. Souchelnytskyi S, Moustakas A, Heldin CH. Trends Cell Biol 12 304-307 (2002)
  77. Studying protein structure and function using semisynthesis. Muir TW. Biopolymers 90 743-750 (2008)
  78. Human ortholog of Drosophila Melted impedes SMAD2 release from TGF-β receptor I to inhibit TGF-β signaling. Shathasivam P, Kollara A, Ringuette MJ, Virtanen C, Wrana JL, Brown TJ. Proc Natl Acad Sci U S A 112 E3000-9 (2015)
  79. TGF-β Signaling Promotes Glioma Progression Through Stabilizing Sox9. Chao M, Liu N, Sun Z, Jiang Y, Jiang T, Xv M, Jia L, Tu Y, Wang L. Front Immunol 11 592080 (2020)
  80. Design, synthesis, and biological evaluation of novel 2-pyridinyl-[1,2,4]triazoles as inhibitors of transforming growth factor beta1 type 1 receptor. Kim DK, Kim J, Park HJ. Bioorg Med Chem 12 2013-2020 (2004)
  81. Retinoids regulate TGFbeta signaling at the level of Smad2 phosphorylation and nuclear accumulation. Hoover LL, Burton EG, O'Neill ML, Brooks BA, Sreedharan S, Dawson NA, Kubalak SW. Biochim Biophys Acta 1783 2279-2286 (2008)
  82. The Role of Lipin-1 in the Regulation of Fibrogenesis and TGF-β Signaling in Hepatic Stellate Cells. Jang CH, Kim KM, Yang JH, Cho SS, Kim SJ, Shin SM, Cho IJ, Ki SH. Toxicol Sci 153 28-38 (2016)
  83. The structure of a Burkholderia pseudomallei immunophilin-inhibitor complex reveals new approaches to antimicrobial development. Norville IH, O'Shea K, Sarkar-Tyson M, Zheng S, Titball RW, Varani G, Harmer NJ. Biochem J 437 413-422 (2011)
  84. 2-Aminoimidazoles inhibitors of TGF-beta receptor 1. Bonafoux D, Chuaqui C, Boriack-Sjodin PA, Fitch C, Hankins G, Josiah S, Black C, Hetu G, Ling L, Lee WC. Bioorg Med Chem Lett 19 912-916 (2009)
  85. Evidence for intermolecular interactions between the intracellular domains of the arabidopsis receptor-like kinase ACR4, its homologs and the Wox5 transcription factor. Meyer MR, Shah S, Zhang J, Rohrs H, Rao AG. PLoS One 10 e0118861 (2015)
  86. Phosphoserine-dependent regulation of protein-protein interactions in the Smad pathway. Wrana JL. Structure 10 5-7 (2002)
  87. Reprogramming of Th1 cells into regulatory T cells through rewiring of the metabolic status. Kanamori M, Nakatsukasa H, Ito M, Chikuma S, Yoshimura A. Int Immunol 30 357-373 (2018)
  88. Structural basis for ALK2/BMPR2 receptor complex signaling through kinase domain oligomerization. Agnew C, Ayaz P, Kashima R, Loving HS, Ghatpande P, Kung JE, Underbakke ES, Shan Y, Shaw DE, Hata A, Jura N. Nat Commun 12 4950 (2021)
  89. Trace element and cytokine concentrations in patients with Fibrodysplasia Ossificans Progressiva (FOP): A case control study. Hildebrand L, Gaber T, Kühnen P, Morhart R, Unterbörsch H, Schomburg L, Seemann P. J Trace Elem Med Biol 39 186-192 (2017)
  90. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity. Alsamarah A, LaCuran AE, Oelschlaeger P, Hao J, Luo Y. PLoS One 10 e0132221 (2015)
  91. When one skeleton is enough: approaches and strategies for the treatment of fibrodysplasia ossificans progressiva (FOP). Kaplan FS, Groppe J, Shore EM. Drug Discov Today Ther Strateg 5 255-262 (2008)
  92. Identification and characterization of functional Smad8 and Smad4 homologues from Echinococcus granulosus. Zhang C, Wang L, Wang H, Pu H, Yang L, Li J, Wang J, Lü G, Lu X, Zhang W, Vuitton DA, Wen H, Lin R. Parasitol Res 113 3745-3757 (2014)
  93. Deciphering the shape and deformation of secondary structures through local conformation analysis. Baussand J, Camproux AC. BMC Struct Biol 11 9 (2011)
  94. Congress New developments for TGFbeta. Padgett RW, Patterson GI. Dev Cell 1 343-349 (2001)
  95. TGF-β1 increases permeability of ciliated airway epithelia via redistribution of claudin 3 from tight junction into cell nuclei. Schilpp C, Lochbaum R, Braubach P, Jonigk D, Frick M, Dietl P, Wittekindt OH. Pflugers Arch 473 287-311 (2021)
  96. The novel type I serine-threonine kinase receptor Alk8 binds TGF-beta in the presence of TGF-betaRII. de Caestecker MP, Bottomley M, Bhattacharyya S, Payne TL, Roberts AB, Yelick PC. Biochem Biophys Res Commun 293 1556-1565 (2002)
  97. Transforming growth factor-beta signaling is differentially inhibited by Smad2D450E and Smad3D407E. Kondo M, Suzuki H, Takehara K, Miyazono K, Kato M. Cancer Sci 95 12-17 (2004)
  98. Dysregulated TGF-β signaling alters bone microstructure in a mouse model of Loeys-Dietz syndrome. Dewan AK, Tomlinson RE, Mitchell S, Goh BC, Yung RM, Kumar S, Tan EW, Faugere MC, Dietz HC, Clemens TL, Sponseller PD. J Orthop Res 33 1447-1454 (2015)
  99. Hypoxia-selective allosteric destabilization of activin receptor-like kinases: A potential therapeutic avenue for prophylaxis of heterotopic ossification. Lu G, Tandang-Silvas MR, Dawson AC, Dawson TJ, Groppe JC. Bone 112 71-89 (2018)
  100. Inactivation of MAP3K7 in FOXD1-expressing cells results in loss of mesangial PDGFRΒ and juvenile kidney scarring. Karolak MJ, Guay JA, Oxburgh L. Am J Physiol Renal Physiol 315 F336-F344 (2018)
  101. Chemical activation of MEK1--a redox trigger for evaluating the effects of phosphorylation. Lamoureaux TL, Lee DH. Chem Commun (Camb) 47 8623-8625 (2011)
  102. Differential kinase activity of ACVR1 G328V and R206H mutations with implications to possible TβRI cross-talk in diffuse intrinsic pontine glioma. Cao H, Jin M, Gao M, Zhou H, Tao YJ, Skolnick J. Sci Rep 10 6140 (2020)
  103. Hsa-miR-5582-3P regulatory effect on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3, and SMAD4 transcripts. Abedini Bakhshmand E, Mohammad Soltani B, Fasihi A, Mowla SJ. J Cell Biochem 119 9921-9930 (2018)
  104. Identification of a transforming growth factor-β type I receptor transcript in Eriocheir sinensis and its molting-related expression in muscle tissues. Tian Z, Peng H, Deng W, Jiao C. Mol Biol Rep 47 77-86 (2020)
  105. ALK2 Receptor Kinase Association with FKBP12.6 Is Structurally Conserved with the ALK2-FKBP12 Complex. Williams E, Riesebos E, Kerr G, Bullock AN. Biomedicines 9 129 (2021)
  106. Computational analyses of interactions between ALK-5 and bioactive ligands: insights for the design of potential anticancer agents. Almeida MO, Costa CHS, Gomes GC, Lameira J, Alves CN, Honorio KM. J Biomol Struct Dyn 36 4010-4022 (2018)
  107. Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Choudhury GG. J Biol Chem 298 102246 (2022)
  108. Small molecule antagonists of the TGF-beta1/TGF-beta receptor binding interaction. Burmester JK, Salzman SA, Zhang KQ, Dart RA. Med Oncol 23 553-562 (2006)
  109. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy. Mina E, Wyart E, Sartori R, Angelino E, Zaggia I, Rausch V, Maldotti M, Pagani A, Hsu MY, Friziero A, Sperti C, Menga A, Graziani A, Hirsch E, Oliviero S, Sandri M, Conti L, Kautz L, Silvestri L, Porporato PE. Cell Rep Med 4 101306 (2023)
  110. Intermittent Hypoxic Therapy Inhibits Allogenic Bone-Graft Resorption by Inhibition of Osteoclastogenesis in a Mouse Model. Bergholt NL, Demirel A, Pedersen M, Ding M, Kragstrup TW, Andersen T, Deleuran BW, Foldager CB. Int J Mol Sci 23 323 (2021)
  111. Polypeptide Substrate Accessibility Hypothesis: Gain-of-Function R206H Mutation Allosterically Affects Activin Receptor-like Protein Kinase Activity. Groppe JC, Lu G, Tandang-Silvas MR, Pathi A, Konda S, Wu J, Le VQ, Culbert AL, Shore EM, Wharton KA, Kaplan FS. Biomolecules 13 1129 (2023)
  112. Smad2 phosphorylation by type I receptor: contribution of arginine 462 and cysteine 463 In the C terminus of Smad2 for specificity. Yakymovych I, Heldin CH, Souchelnytskyi S. J Biol Chem 279 35781-35787 (2004)
  113. The Orphan GPR50 Receptor Regulates the Aggressiveness of Breast Cancer Stem-like Cells via Targeting the NF-kB Signaling Pathway. Biswas PK, Park SR, An J, Lim KM, Dayem AA, Song K, Choi HY, Choi Y, Park KS, Shin HJ, Kim A, Gil M, Saha SK, Cho SG. Int J Mol Sci 24 2804 (2023)
  114. Historical Article 2005 Irving Sigal Young Investigator Award. Muir TW. Protein Sci 14 3140-3144 (2005)
  115. Assessment of the effectiveness of the peptide inhibitor homologous to the transforming growth factor β cytokine blocking the TGFβRI/TGFβRII receptor complex-pilot study. Mateusz M, Seweryn KM, Janusz S, Piotr K, Panek MG. Clin Transl Allergy 14 e12320 (2024)
  116. Large-scale analysis of the N-terminal regulatory elements of the kinase domain in plant Receptor-like kinase family. Fu Q, Liu Q, Zhang R, Chen J, Guo H, Ming Z, Yu F, Zheng H. BMC Plant Biol 24 174 (2024)
  117. Congress Organic chemistry at the interface to biology. Clausen RP. Chembiochem 7 845-849 (2006)
  118. Therapeutic potency of compound RMY-205 for pulmonary fibrosis induced by SARS-CoV-2 nucleocapsid protein. Zhang ZY, Ju CY, Wu LZ, Yan H, Hong WB, Chen HZ, Yang PB, Wang BR, Gou T, Chen XY, Jiang ZH, Wang WJ, Lin T, Li FN, Wu Q. Cell Chem Biol 30 261-277.e8 (2023)
  119. [The Role of TGF-β1/SMAD in Diabetic Nephropathy: Mechanisms and Research Development]. Wang Y, Guo J, Shao B, Chen H, Lan H. Sichuan Da Xue Xue Bao Yi Xue Ban 54 1065-1073 (2023)