1hho Citations

Structure of human oxyhaemoglobin at 2.1 A resolution.

J Mol Biol 171 31-59 (1983)
Cited: 282 times
EuropePMC logo PMID: 6644819

Abstract

The structure of human oxyhaemoglobin was determined by single crystal X-ray analysis at 2.1 A resolution. Data were collected on an Arndt-Wonacott camera at -2 degrees C. The structure was refined to an R factor of 0.223 by the Jack-Levitt method, starting from Baldwin's model of human carbon monoxide haemoglobin. The active sites in the alpha and beta subunit are distinct. The iron atoms are 0.16(8) A and 0.00(8) A from the mean plane of the porphyrin carbons and nitrogens (0.12(8) A and -0.11(8) A from the mean plane of the porphyrin nitrogens) in the alpha and beta subunit, respectively, in correlation with the orientation of HisF8 relative to the porphyrin nitrogens. The haem group appears to be nearly planar in the alpha subunit but ruffled in the beta subunit. The Fe-O(1)-O(2) angles are 153(7) degrees and 159(12) degrees in the alpha and beta subunit, respectively. The oxygen molecule forms a hydrogen bond to N epsilon of HisE7 in the alpha, but either none or a weak one in the beta subunit. The following bond lengths were found: Fe-N epsilon (HisF8) = 1.94(9) A (alpha) and 2.07(9) A (beta); Fe-O(1) = 1.66(8) A (alpha) and 1.87(13) A (beta); Fe-Nporph (mean = 1.99(5) A (alpha) and 1.96(6) A (beta). These dimensions agree with the values obtained in oxymyoglobin and model compounds. The C-terminal residues, ArgHC3(141 alpha) and HisHC3(146 beta), are relatively delocalized, and their positions do not enable them to form the intersubunit salt bridges in which they are involved in deoxyhaemoglobin. The penultimate tyrosine residues, TyrHC2 140 alpha and 145 beta, are relatively localized and maintain the hydrogen bonds to the carbonyl oxygens of ValFG5 (93 alpha and 98 beta), with only minor variations compared to their geometry in deoxyhaemoglobin. TyrHC2(145 beta), however, alternates between a major and a minor site, in conjunction with CysF9(93 beta), both sharing the internal pocket between the F and H helices while in the major conformation. This suggests that the role of the penultimate tyrosines in the allosteric mechanism may differ from that previously proposed by Perutz. The overall quaternary structure of oxyhaemoglobin is identical, within experimental error, to that of carbon monoxide haemoglobin, and thus confirms the applicability of the allosteric mechanisms proposed by Perutz and Baldwin & Chothia to the process of oxygen binding.

Reviews - 1hho mentioned but not cited (9)

  1. Allostery: absence of a change in shape does not imply that allostery is not at play. Tsai CJ, del Sol A, Nussinov R. J Mol Biol 378 1-11 (2008)
  2. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Huang X, Groves JT. Chem Rev 118 2491-2553 (2018)
  3. New look at hemoglobin allostery. Yuan Y, Tam MF, Simplaceanu V, Ho C. Chem Rev 115 1702-1724 (2015)
  4. Protein Assembly by Design. Zhu J, Avakyan N, Kakkis A, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Chem Rev 121 13701-13796 (2021)
  5. Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering. Garcia-Seisdedos H, Villegas JA, Levy ED. Angew Chem Int Ed Engl 58 5514-5531 (2019)
  6. The peroxidatic activities of Myoglobin and Hemoglobin, their pathological consequences and possible medical interventions. Wilson MT, Reeder BJ. Mol Aspects Med 84 101045 (2022)
  7. The role of globins in cardiovascular physiology. Keller TCS, Lechauve C, Keller AS, Brooks S, Weiss MJ, Columbus L, Ackerman H, Cortese-Krott MM, Isakson BE. Physiol Rev 102 859-892 (2022)
  8. Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. Li L, Meyer C, Zhou ZW, Elmezayen A, Westover K. J Mol Biol 434 167626 (2022)
  9. Introduction to molecular replacement: a time perspective. Dodson E. Acta Crystallogr D Struct Biol 77 867-879 (2021)

Articles - 1hho mentioned but not cited (41)

  1. A server and database for dipole moments of proteins. Felder CE, Prilusky J, Silman I, Sussman JL. Nucleic Acids Res 35 W512-21 (2007)
  2. Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Shimizu S. Proc Natl Acad Sci U S A 101 1195-1199 (2004)
  3. Pathway for heme uptake from human methemoglobin by the iron-regulated surface determinants system of Staphylococcus aureus. Zhu H, Xie G, Liu M, Olson JS, Fabian M, Dooley DM, Lei B. J Biol Chem 283 18450-18460 (2008)
  4. iGNM: a database of protein functional motions based on Gaussian Network Model. Yang LW, Liu X, Jursa CJ, Holliman M, Rader AJ, Karimi HA, Bahar I. Bioinformatics 21 2978-2987 (2005)
  5. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level. Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Muñoz-Fuentes V, Green AJ, Kopuchian C, Tubaro PL, Alza L, Bulgarella M, Smith MM, Wilson RE, Fago A, McCracken KG, Storz JF. PLoS Genet 11 e1005681 (2015)
  6. New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels. Viappiani C, Bettati S, Bruno S, Ronda L, Abbruzzetti S, Mozzarelli A, Eaton WA. Proc Natl Acad Sci U S A 101 14414-14419 (2004)
  7. Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: effector-linked perturbation of tertiary conformations and HbA concerted dynamics. Laberge M, Yonetani T. Biophys J 94 2737-2751 (2008)
  8. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Wang J, Youkharibache P, Zhang D, Lanczycki CJ, Geer RC, Madej T, Phan L, Ward M, Lu S, Marchler GH, Wang Y, Bryant SH, Geer LY, Marchler-Bauer A. Bioinformatics 36 131-135 (2020)
  9. Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. Rao S, Bálint S, Cossins B, Guallar V, Petrov D. Biophys J 96 209-216 (2009)
  10. Game on, science - how video game technology may help biologists tackle visualization challenges. Lv Z, Tek A, Da Silva F, Empereur-mot C, Chavent M, Baaden M. PLoS One 8 e57990 (2013)
  11. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Zhu X, Guan Y, Signore AV, Natarajan C, DuBay SG, Cheng Y, Han N, Song G, Qu Y, Moriyama H, Hoffmann FG, Fago A, Lei F, Storz JF. Proc Natl Acad Sci U S A 115 1865-1870 (2018)
  12. NMR reveals hydrogen bonds between oxygen and distal histidines in oxyhemoglobin. Lukin JA, Simplaceanu V, Zou M, Ho NT, Ho C. Proc Natl Acad Sci U S A 97 10354-10358 (2000)
  13. Structure-based predictive models for allosteric hot spots. Demerdash ON, Daily MD, Mitchell JC. PLoS Comput Biol 5 e1000531 (2009)
  14. Conformational transition pathways explored by Monte Carlo simulation integrated with collective modes. Kantarci-Carsibasi N, Haliloglu T, Doruker P. Biophys J 95 5862-5873 (2008)
  15. Influence of the chemistry of conjugation of poly(ethylene glycol) to Hb on the oxygen-binding and solution properties of the PEG-Hb conjugate. Hu T, Prabhakaran M, Acharya SA, Manjula BN. Biochem J 392 555-564 (2005)
  16. α-Hemoglobin stabilizing protein (AHSP) markedly decreases the redox potential and reactivity of α-subunits of human HbA with hydrogen peroxide. Mollan TL, Banerjee S, Wu G, Parker Siburt CJ, Tsai AL, Olson JS, Weiss MJ, Crumbliss AL, Alayash AI. J Biol Chem 288 4288-4298 (2013)
  17. Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study. Jones EM, Monza E, Balakrishnan G, Blouin GC, Mak PJ, Zhu Q, Kincaid JR, Guallar V, Spiro TG. J Am Chem Soc 136 10325-10339 (2014)
  18. Experiments on Hemoglobin in Single Crystals and Silica Gels Distinguish among Allosteric Models. Henry ER, Mozzarelli A, Viappiani C, Abbruzzetti S, Bettati S, Ronda L, Bruno S, Eaton WA. Biophys J 109 1264-1272 (2015)
  19. Adaptive Changes in Hemoglobin Function in High-Altitude Tibetan Canids Were Derived via Gene Conversion and Introgression. Signore AV, Yang YZ, Yang QY, Qin G, Moriyama H, Ge RL, Storz JF. Mol Biol Evol 36 2227-2237 (2019)
  20. Discovery of the magnetic behavior of hemoglobin: A beginning of bioinorganic chemistry. Bren KL, Eisenberg R, Gray HB. Proc Natl Acad Sci U S A 112 13123-13127 (2015)
  21. Structural analysis of haemoglobin binding by HpuA from the Neisseriaceae family. Wong CT, Xu Y, Gupta A, Garnett JA, Matthews SJ, Hare SA. Nat Commun 6 10172 (2015)
  22. Native top-down mass spectrometry for the structural characterization of human hemoglobin. Zhang J, Reza Malmirchegini G, Clubb RT, Loo JA. Eur J Mass Spectrom (Chichester) 21 221-231 (2015)
  23. Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes. Verde C, Howes BD, De Rosa MC, Raiola L, Smulevich G, Williams R, Giardina B, Parisi E, Di Prisco G. Protein Sci 13 2766-2781 (2004)
  24. The genetic basis and evolution of red blood cell sickling in deer. Esin A, Bergendahl LT, Savolainen V, Marsh JA, Warnecke T. Nat Ecol Evol 2 367-376 (2018)
  25. Benfang Lei's research on heme acquisition in Gram-positive pathogens and bacterial pathogenesis. Lei B. World J Biol Chem 1 286-290 (2010)
  26. Mapping hydrophobicity on the protein molecular surface at atom-level resolution. Nicolau DV, Paszek E, Fulga F, Nicolau DV. PLoS One 9 e114042 (2014)
  27. Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections. Verbeke EJ, Zhou Y, Horton AP, Mallam AL, Taylor DW, Marcotte EM. J Struct Biol 209 107416 (2020)
  28. BioSuper: a web tool for the superimposition of biomolecules and assemblies with rotational symmetry. Rueda M, Orozco M, Totrov M, Abagyan R. BMC Struct Biol 13 32 (2013)
  29. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor. Lane-Serff H, MacGregor P, Peacock L, Macleod OJ, Kay C, Gibson W, Higgins MK, Carrington M. Elife 5 e13044 (2016)
  30. Structure of the altitude adapted hemoglobin of guinea pig in the R2-state. Pairet B, Jaenicke E. PLoS One 5 e12389 (2010)
  31. Tertiary and quaternary allostery in tetrameric hemoglobin from Scapharca inaequivalvis. Ronda L, Bettati S, Henry ER, Kashav T, Sanders JM, Royer WE, Mozzarelli A. Biochemistry 52 2108-2117 (2013)
  32. An in silico approach to map the binding site of doxorubicin on hemoglobin. Khan SN, Khan AU. Bioinformation 2 401-404 (2008)
  33. Molecular Docking of Known Carcinogen 4- (Methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) with Cyclin Dependent Kinases towards Its Potential Role in Cell Cycle Perturbation. Haneef M, Lohani M, Dhasmana A, Jamal QM, Shahid SM, Firdaus S. Bioinformation 10 526-532 (2014)
  34. Protein molecular surface mapped at different geometrical resolutions. Nicolau DV, Paszek E, Fulga F, Nicolau DV. PLoS One 8 e58896 (2013)
  35. iCn3D: From Web-Based 3D Viewer to Structural Analysis Tool in Batch Mode. Wang J, Youkharibache P, Marchler-Bauer A, Lanczycki C, Zhang D, Lu S, Madej T, Marchler GH, Cheng T, Chong LC, Zhao S, Yang K, Lin J, Cheng Z, Dunn R, Malkaram SA, Tai CH, Enoma D, Busby B, Johnson NL, Tabaro F, Song G, Ge Y. Front Mol Biosci 9 831740 (2022)
  36. On the reliability and the limits of inference of amino acid sequence alignments. Rajapaksa S, Sumanaweera D, Lesk AM, Allison L, Stuckey PJ, Garcia de la Banda M, Abramson D, Konagurthu AS. Bioinformatics 38 i255-i263 (2022)
  37. Tyrosyl radical in haemoglobin and haptoglobin-haemoglobin complex: how does haptoglobin make haemoglobin less toxic? Svistunenko DA, Manole A. J Biomed Res 34 281-291 (2019)
  38. Crystal structure of hemoglobin from mouse (Mus musculus) compared with those from other small animals and humans. Sundaresan SS, Ramesh P, Shobana N, Vinuchakkaravarthy T, Yasien S, Ponnuswamy MNG. Acta Crystallogr F Struct Biol Commun 77 113-120 (2021)
  39. Hemoglobin is an oxygen-dependent glutathione buffer adapting the intracellular reduced glutathione levels to oxygen availability. Fenk S, Melnikova EV, Anashkina AA, Poluektov YM, Zaripov PI, Mitkevich VA, Tkachev YV, Kaestner L, Minetti G, Mairbäurl H, Goede JS, Makarov AA, Petrushanko IY, Bogdanova A. Redox Biol 58 102535 (2022)
  40. Influence of spatial structure on protein damage susceptibility: a bioinformatics approach. Fichtner M, Schuster S, Stark H. Sci Rep 11 4938 (2021)
  41. Parakeet Hemoglobin - Its Crystal Structure and Oxygen Affinity in Relation to Some Avian Hemoglobins. Jaimohan SM, Naresh MD, Mandal AB. Protein Pept Lett 28 18-30 (2021)


Reviews citing this publication (23)

  1. Mechanisms of cooperativity and allosteric regulation in proteins. Perutz MF. Q Rev Biophys 22 139-237 (1989)
  2. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Perutz MF, Wilkinson AJ, Paoli M, Dodson GG. Annu Rev Biophys Biomol Struct 27 1-34 (1998)
  3. Hydrophobicity: is LogP(o/w) more than the sum of its parts? Eugene Kellogg G, Abraham DJ. Eur J Med Chem 35 651-661 (2000)
  4. The multiple functions of hemoglobin. Giardina B, Messana I, Scatena R, Castagnola M. Crit Rev Biochem Mol Biol 30 165-196 (1995)
  5. Nonvertebrate hemoglobins: structural bases for reactivity. Bolognesi M, Bordo D, Rizzi M, Tarricone C, Ascenzi P. Prog Biophys Mol Biol 68 29-68 (1997)
  6. Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Perutz MF. Trends Biochem Sci 14 42-44 (1989)
  7. Quinary protein structure and the consequences of crowding in living cells: leaving the test-tube behind. Wirth AJ, Gruebele M. Bioessays 35 984-993 (2013)
  8. Spectroscopic features of cytochrome P450 reaction intermediates. Luthra A, Denisov IG, Sligar SG. Arch Biochem Biophys 507 26-35 (2011)
  9. Cooperative hemoglobins: conserved fold, diverse quaternary assemblies and allosteric mechanisms. Royer WE, Knapp JE, Strand K, Heaslet HA. Trends Biochem Sci 26 297-304 (2001)
  10. Protein dynamics explain the allosteric behaviors of hemoglobin. Yonetani T, Laberge M. Biochim Biophys Acta 1784 1146-1158 (2008)
  11. Mutagenic dissection of hemoglobin cooperativity: effects of amino acid alteration on subunit assembly of oxy and deoxy tetramers. Turner GJ, Galacteros F, Doyle ML, Hedlund B, Pettigrew DW, Turner BW, Smith FR, Moo-Penn W, Rucknagel DL, Ackers GK. Proteins 14 333-350 (1992)
  12. Molecular aspects of embryonic hemoglobin function. Brittain T. Mol Aspects Med 23 293-342 (2002)
  13. Computer studies of interactions between macromolecules. Wodak SJ, De Crombrugghe M, Janin J. Prog Biophys Mol Biol 49 29-63 (1987)
  14. Structures of a hemoglobin-based blood substitute: insights into the function of allosteric proteins. Kroeger KS, Kundrot CE. Structure 5 227-237 (1997)
  15. The heme environment of mouse neuroglobin: histidine imidazole plane orientations obtained from solution NMR and EPR spectroscopy as compared with X-ray crystallography. Walker FA. J Biol Inorg Chem 11 391-397 (2006)
  16. Allosteric linkage-induced distortions of the prosthetic group in haem proteins as derived by the theoretical interpretation of the depolarization ratio in resonance Raman scattering. Schweitzer-Stenner R. Q Rev Biophys 22 381-479 (1989)
  17. Crossed and linked histories of tetrapyrrolic macrocycles and their use for engineering pores within sol-gel matrices. García-Sánchez MA, Rojas-González F, Menchaca-Campos EC, Tello-Solís SR, Quiroz-Segoviano RI, Diaz-Alejo LA, Salas-Bañales E, Campero A. Molecules 18 588-653 (2013)
  18. Protein Structural Dynamics of Wild-Type and Mutant Homodimeric Hemoglobin Studied by Time-Resolved X-Ray Solution Scattering. Yang C, Choi M, Kim JG, Kim H, Muniyappan S, Nozawa S, Adachi SI, Henning R, Kosheleva I, Ihee H. Int J Mol Sci 19 E3633 (2018)
  19. Evolution of haemoglobin studied by protein engineering. Nagai K, Luisi B, Shih D. Bioessays 8 79-82 (1988)
  20. Reactivity of the human hemoglobin "dark side". Ascenzi P, Leboffe L, Polticelli F. IUBMB Life 65 121-126 (2013)
  21. Heme-Protein Interactions and Functional Relevant Heme Deformations: The Cytochrome c Case. Schweitzer-Stenner R. Molecules 27 8751 (2022)
  22. Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins. Turilli-Ghisolfi ES, Lualdi M, Fasano M. Biomolecules 13 683 (2023)
  23. Sweetening K-channels: what sugar taught us about permeation and gating. Naranjo D, Diaz-Franulic I. Front Mol Biosci 10 1063796 (2023)

Articles citing this publication (209)

  1. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. Fermi G, Perutz MF, Shaanan B, Fourme R. J Mol Biol 175 159-174 (1984)
  2. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Doherty DH, Doyle MP, Curry SR, Vali RJ, Fattor TJ, Olson JS, Lemon DD. Nat Biotechnol 16 672-676 (1998)
  3. A human recombinant haemoglobin designed for use as a blood substitute. Looker D, Abbott-Brown D, Cozart P, Durfee S, Hoffman S, Mathews AJ, Miller-Roehrich J, Shoemaker S, Trimble S, Fermi G. Nature 356 258-260 (1992)
  4. 1.25 A resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms. Park SY, Yokoyama T, Shibayama N, Shiro Y, Tame JR. J Mol Biol 360 690-701 (2006)
  5. Allosteric changes in protein structure computed by a simple mechanical model: hemoglobin T<-->R2 transition. Xu C, Tobi D, Bahar I. J Mol Biol 333 153-168 (2003)
  6. Four helix bundle diversity in globular proteins. Harris NL, Presnell SR, Cohen FE. J Mol Biol 236 1356-1368 (1994)
  7. Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases. Vetting MW, Wackett LP, Que L, Lipscomb JD, Ohlendorf DH. J Bacteriol 186 1945-1958 (2004)
  8. Effects of Tween 80 and sucrose on acute short-term stability and long-term storage at -20 degrees C of a recombinant hemoglobin. Kerwin BA, Heller MC, Levin SH, Randolph TW. J Pharm Sci 87 1062-1068 (1998)
  9. Distal residues in the oxygen binding site of haemoglobin studied by protein engineering. Nagai K, Luisi B, Shih D, Miyazaki G, Imai K, Poyart C, De Young A, Kwiatkowsky L, Noble RW, Lin SH. Nature 329 858-860 (1987)
  10. Resmap: automated representation of macromolecular interfaces as two-dimensional networks. Swint-Kruse L, Brown CS. Bioinformatics 21 3327-3328 (2005)
  11. Distribution and complementarity of hydropathy in multisubunit proteins. Korn AP, Burnett RM. Proteins 9 37-55 (1991)
  12. High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T(alpha-oxy)haemoglobin and T(met)haemoglobin. Liddington R, Derewenda Z, Dodson E, Hubbard R, Dodson G. J Mol Biol 228 551-579 (1992)
  13. Chlorite dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the CDE structural superfamily. Goblirsch B, Kurker RC, Streit BR, Wilmot CM, DuBois JL. J Mol Biol 408 379-398 (2011)
  14. Porphyrin-mediated binding to hemoglobin by the HA2 domain of cysteine proteinases (gingipains) and hemagglutinins from the periodontal pathogen Porphyromonas gingivalis. DeCarlo AA, Paramaesvaran M, Yun PL, Collyer C, Hunter N. J Bacteriol 181 3784-3791 (1999)
  15. The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of alpha-helices. Perutz MF, Gronenborn AM, Clore GM, Fogg JH, Shih DT. J Mol Biol 183 491-498 (1985)
  16. Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins. Johnson MS, Sutcliffe MJ, Blundell TL. J Mol Evol 30 43-59 (1990)
  17. Distal histidine stabilizes bound O2 and acts as a gate for ligand entry in both subunits of adult human hemoglobin. Birukou I, Schweers RL, Olson JS. J Biol Chem 285 8840-8854 (2010)
  18. Allosteric action in real time: time-resolved crystallographic studies of a cooperative dimeric hemoglobin. Knapp JE, Pahl R, Srajer V, Royer WE. Proc Natl Acad Sci U S A 103 7649-7654 (2006)
  19. Direct observation of cooperative protein structural dynamics of homodimeric hemoglobin from 100 ps to 10 ms with pump-probe X-ray solution scattering. Kim KH, Muniyappan S, Oang KY, Kim JG, Nozawa S, Sato T, Koshihara SY, Henning R, Kosheleva I, Ki H, Kim Y, Kim TW, Kim J, Adachi S, Ihee H. J Am Chem Soc 134 7001-7008 (2012)
  20. Comparison of the structures of globins and phycocyanins: evidence for evolutionary relationship. Pastore A, Lesk AM. Proteins 8 133-155 (1990)
  21. Deoxymyoglobin studied by the conformational normal mode analysis. I. Dynamics of globin and the heme-globin interaction. Seno Y, Go N. J Mol Biol 216 95-109 (1990)
  22. Haemoglobin of the antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative. Camardella L, Caruso C, D'Avino R, di Prisco G, Rutigliano B, Tamburrini M, Fermi G, Perutz MF. J Mol Biol 224 449-460 (1992)
  23. The T-to-R transformation in hemoglobin: a reevaluation. Srinivasan R, Rose GD. Proc Natl Acad Sci U S A 91 11113-11117 (1994)
  24. Unsuspected pathway of the allosteric transition in hemoglobin. Fischer S, Olsen KW, Nam K, Karplus M. Proc Natl Acad Sci U S A 108 5608-5613 (2011)
  25. Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature range 300-20 K. Relation with protein dynamics. Cordone L, Cupane A, Leone M, Vitrano E. Biophys Chem 24 259-275 (1986)
  26. Allosteric transition intermediates modelled by crosslinked haemoglobins. Schumacher MA, Dixon MM, Kluger R, Jones RT, Brennan RG. Nature 375 84-87 (1995)
  27. Iron L-edge X-ray absorption spectroscopy of oxy-picket fence porphyrin: experimental insight into Fe-O2 bonding. Wilson SA, Kroll T, Decreau RA, Hocking RK, Lundberg M, Hedman B, Hodgson KO, Solomon EI. J Am Chem Soc 135 1124-1136 (2013)
  28. New insights into the allosteric mechanism of human hemoglobin from molecular dynamics simulations. Mouawad L, Perahia D, Robert CH, Guilbert C. Biophys J 82 3224-3245 (2002)
  29. The mutation beta 99 Asp-Tyr stabilizes Y--a new, composite quaternary state of human hemoglobin. Smith FR, Lattman EE, Carter CW. Proteins 10 81-91 (1991)
  30. Experimental resolution of cooperative free energies for the ten ligation states of human hemoglobin. Smith FR, Ackers GK. Proc Natl Acad Sci U S A 82 5347-5351 (1985)
  31. Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding. Liddington R, Derewenda Z, Dodson G, Harris D. Nature 331 725-728 (1988)
  32. Quantification of tertiary structural conservation despite primary sequence drift in the globin fold. Aronson HE, Royer WE, Hendrickson WA. Protein Sci 3 1706-1711 (1994)
  33. The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity. Liang Y, Hua Z, Liang X, Xu Q, Lu G. J Mol Biol 313 123-137 (2001)
  34. Rigid domains in proteins: an algorithmic approach to their identification. Nichols WL, Rose GD, Ten Eyck LF, Zimm BH. Proteins 23 38-48 (1995)
  35. Structural basis for the root effect in haemoglobin. Mylvaganam SE, Bonaventura C, Bonaventura J, Getzoff ED. Nat Struct Biol 3 275-283 (1996)
  36. Direct observation of photolysis-induced tertiary structural changes in hemoglobin. Adachi S, Park SY, Tame JR, Shiro Y, Shibayama N. Proc Natl Acad Sci U S A 100 7039-7044 (2003)
  37. Large differences are observed between the crystal and solution quaternary structures of allosteric aspartate transcarbamylase in the R state. Svergun DI, Barberato C, Koch MH, Fetler L, Vachette P. Proteins 27 110-117 (1997)
  38. Very empirical treatment of solvation and entropy: a force field derived from log Po/w. Kellogg GE, Burnett JC, Abraham DJ. J Comput Aided Mol Des 15 381-393 (2001)
  39. Stereochemistry of carbon monoxide binding to normal human adult and Cowtown haemoglobins. Derewenda Z, Dodson G, Emsley P, Harris D, Nagai K, Perutz M, Renaud JP. J Mol Biol 211 515-519 (1990)
  40. Hydropathic analysis of the non-covalent interactions between molecular subunits of structurally characterized hemoglobins. Abraham DJ, Kellogg GE, Holt JM, Ackers GK. J Mol Biol 272 613-632 (1997)
  41. The structural and functional analysis of the hemoglobin D component from chicken. Knapp JE, Oliveira MA, Xie Q, Ernst SR, Riggs AF, Hackert ML. J Biol Chem 274 6411-6420 (1999)
  42. Computationally accessible method for estimating free energy changes resulting from site-specific mutations of biomolecules: systematic model building and structural/hydropathic analysis of deoxy and oxy hemoglobins. Burnett JC, Botti P, Abraham DJ, Kellogg GE. Proteins 42 355-377 (2001)
  43. Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli. Weickert MJ, Pagratis M, Curry SR, Blackmore R. Appl Environ Microbiol 63 4313-4320 (1997)
  44. Structure of deoxy-quaternary haemoglobin with liganded beta subunits. Luisi B, Liddington B, Fermi G, Shibayama N. J Mol Biol 214 7-14 (1990)
  45. X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin at 2.0 A resolution. Stabilization of the fluoride ion by hydrogen bonding to Arg66 (E10). Bolognesi M, Coda A, Frigerio F, Gatti G, Ascenzi P, Brunori M. J Mol Biol 213 621-625 (1990)
  46. High-resolution crystal structure of deoxy hemoglobin complexed with a potent allosteric effector. Safo MK, Moure CM, Burnett JC, Joshi GS, Abraham DJ. Protein Sci 10 951-957 (2001)
  47. NMR investigation of the dynamics of tryptophan side-chains in hemoglobins. Yuan Y, Simplaceanu V, Lukin JA, Ho C. J Mol Biol 321 863-878 (2002)
  48. NO reductase activity of the tetraheme cytochrome C554 of Nitrosomonas europaea. Upadhyay AK, Hooper AB, Hendrich MP. J Am Chem Soc 128 4330-4337 (2006)
  49. Restoring allosterism with compensatory mutations in hemoglobin. Kim HW, Shen TJ, Sun DP, Ho NT, Madrid M, Tam MF, Zou M, Cottam PF, Ho C. Proc Natl Acad Sci U S A 91 11547-11551 (1994)
  50. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood. Albert MS, Balamore D, Kacher DF, Venkatesh AK, Jolesz FA. NMR Biomed 13 407-414 (2000)
  51. Lessons on O2 and NO bonding to heme from ab initio multireference/multiconfiguration and DFT calculations. Shaik S, Chen H. J Biol Inorg Chem 16 841-855 (2011)
  52. Cyanomet human hemoglobin crystallized under physiological conditions exhibits the Y quaternary structure. Smith FR, Simmons KC. Proteins 18 295-300 (1994)
  53. Haemoglobin: the surface buried between the alpha 1 beta 1 and alpha 2 beta 2 dimers in the deoxy and oxy structures. Lesk AM, Janin J, Wodak S, Chothia C. J Mol Biol 183 267-270 (1985)
  54. Allosteric intermediates indicate R2 is the liganded hemoglobin end state. Schumacher MA, Zheleznova EE, Poundstone KS, Kluger R, Jones RT, Brennan RG. Proc Natl Acad Sci U S A 94 7841-7844 (1997)
  55. Electrostatics of hemoglobins from measurements of the electric dichroism and computer simulations. Antosiewicz J, Porschke D. Biophys J 68 655-664 (1995)
  56. The crystal structure of the Bacillus lentus alkaline protease, subtilisin BL, at 1.4 A resolution. Goddette DW, Paech C, Yang SS, Mielenz JR, Bystroff C, Wilke ME, Fletterick RJ. J Mol Biol 228 580-595 (1992)
  57. The pH dependence of naturally occurring low-spin forms of methaemoglobin and metmyoglobin: an EPR study. Svistunenko DA, Sharpe MA, Nicholls P, Blenkinsop C, Davies NA, Dunne J, Wilson MT, Cooper CE. Biochem J 351 Pt 3 595-605 (2000)
  58. 2.2 A structure of oxy-peroxidase as a model for the transient enzyme: peroxide complex. Miller MA, Shaw A, Kraut J. Nat Struct Biol 1 524-531 (1994)
  59. Cysteines beta93 and beta112 as probes of conformational and functional events at the human hemoglobin subunit interfaces. Vásquez GB, Karavitis M, Ji X, Pechik I, Brinigar WS, Gilliland GL, Fronticelli C. Biophys J 76 88-97 (1999)
  60. Structure of haemoglobin in the deoxy quaternary state with ligand bound at the alpha haems. Luisi B, Shibayama N. J Mol Biol 206 723-736 (1989)
  61. What is the true structure of liganded haemoglobin? Tame JR. Trends Biochem Sci 24 372-377 (1999)
  62. Functional role of the distal valine (E11) residue of alpha subunits in human haemoglobin. Tame J, Shih DT, Pagnier J, Fermi G, Nagai K. J Mol Biol 218 761-767 (1991)
  63. Harmonic and anharmonic dynamics of Fe-CO and Fe-O(2) in heme models. Rovira C, Parrinello M. Biophys J 78 93-100 (2000)
  64. Ultraviolet resonance Raman studies of quaternary structure of hemoglobin using a tryptophan beta 37 mutant. Nagai M, Kaminaka S, Ohba Y, Nagai Y, Mizutani Y, Kitagawa T. J Biol Chem 270 1636-1642 (1995)
  65. X-ray diffraction studies of a partially liganded hemoglobin, [alpha(FeII-CO)beta(MnII)]2. Arnone A, Rogers P, Blough NV, McGourty JL, Hoffman BM. J Mol Biol 188 693-706 (1986)
  66. Effect of glutaraldehyde on haemoglobin: oxidation-reduction potentials and stability. Guillochon D, Esclade L, Thomas D. Biochem Pharmacol 35 317-323 (1986)
  67. Solution 1H nuclear magnetic resonance determination of hydrogen bonding of the E10 (66) Arg side-chain to the bound ligand in Aplysia cyano-met myoglobin. Qin J, La Mar GN, Ascoli F, Bolognesi M, Brunori M. J Mol Biol 224 891-897 (1992)
  68. Tension in haemoglobin revealed by Fe-His(F8) bond rupture in the fully liganded T-state. Paoli M, Dodson G, Liddington RC, Wilkinson AJ. J Mol Biol 271 161-167 (1997)
  69. The X-ray structure determination of bovine carbonmonoxy hemoglobin at 2.1 A resoultion and its relationship to the quaternary structures of other hemoglobin crystal froms. Safo MK, Abraham DJ. Protein Sci 10 1091-1099 (2001)
  70. Allosteric energy at the hemoglobin beta chain C terminus studied by hydrogen exchange. Louie G, Tran T, Englander JJ, Englander SW. J Mol Biol 201 755-764 (1988)
  71. R-state hemoglobin bound to heterotropic effectors: models of the DPG, IHP and RSR13 binding sites. Laberge M, Kövesi I, Yonetani T, Fidy J. FEBS Lett 579 627-632 (2005)
  72. Structural and functional studies indicating altered redox properties of hemoglobin E: implications for production of bioactive nitric oxide. Roche CJ, Malashkevich V, Balazs TC, Dantsker D, Chen Q, Moreira J, Almo SC, Friedman JM, Hirsch RE. J Biol Chem 286 23452-23466 (2011)
  73. A new mode for heme-heme interactions in hemoglobin associated with distal perturbations. Levy A, Sharma VS, Zhang L, Rifkind JM. Biophys J 61 750-755 (1992)
  74. Comparing short protein substructures by a method based on backbone torsion angles. Karpen ME, de Haseth PL, Neet KE. Proteins 6 155-167 (1989)
  75. Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds. Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro TG. J Mol Biol 356 335-353 (2006)
  76. Electron-electron spin-spin interaction in spin-labeled low-spin methemoglobin. Budker V, Du JL, Seiter M, Eaton GR, Eaton SS. Biophys J 68 2531-2542 (1995)
  77. Site-selective glycosylation of hemoglobin with variable molecular weight oligosaccharides: potential alternative to PEGylation. Styslinger TJ, Zhang N, Bhatt VS, Pettit N, Palmer AF, Wang PG. J Am Chem Soc 134 7507-7515 (2012)
  78. The chloride effect in the human embryonic haemoglobins. Hofmann O, Carrucan G, Robson N, Brittain T. Biochem J 309 ( Pt 3) 959-962 (1995)
  79. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. Stadler AM, Garvey CJ, Bocahut A, Sacquin-Mora S, Digel I, Schneider GJ, Natali F, Artmann GM, Zaccai G. J R Soc Interface 9 2845-2855 (2012)
  80. Regulation of oxygen affinity by quaternary enhancement: does hemoglobin Ypsilanti represent an allosteric intermediate? Doyle ML, Lew G, Turner GJ, Rucknagel D, Ackers GK. Proteins 14 351-362 (1992)
  81. Structure of deoxyhemoglobin Cowtown [His HC3(146) beta----Leu]: origin of the alkaline Bohr effect and electrostatic interactions in hemoglobin. Perutz MF, Fermi G, Shih TB. Proc Natl Acad Sci U S A 81 4781-4784 (1984)
  82. Slow histidine H/D exchange protocol for thermodynamic analysis of protein folding and stability using mass spectrometry. Tran DT, Banerjee S, Alayash AI, Crumbliss AL, Fitzgerald MC. Anal Chem 84 1653-1660 (2012)
  83. Acid Bohr effect of a monomeric haemoglobin from Dicrocoelium dendriticum. Mechanism of the allosteric conformation transition. Smit JD, Sick H, Peterhans A, Gersonde K. Eur J Biochem 155 231-237 (1986)
  84. Cooperative protein structural dynamics of homodimeric hemoglobin linked to water cluster at subunit interface revealed by time-resolved X-ray solution scattering. Kim JG, Muniyappan S, Oang KY, Kim TW, Yang C, Kim KH, Kim J, Ihee H. Struct Dyn 3 023610 (2016)
  85. Effects of NaCl on the linkages between O2 binding and subunit assembly in human hemoglobin: titration of the quaternary enhancement effect. Doyle ML, Holt JM, Ackers GK. Biophys Chem 64 271-287 (1997)
  86. Apparent specific volume of human hemoglobin: effect of ligand state and contribution of heme. DeMoll E, Cox DJ, Daniel E, Riggs AF. Anal Biochem 363 196-203 (2007)
  87. Conformation-invariant structures of the alpha1beta1 human hemoglobin dimer. Nichols WL, Zimm BH, Ten Eyck LF. J Mol Biol 270 598-615 (1997)
  88. An investigation of the distal histidyl hydrogen bonds in oxyhemoglobin: effects of temperature, pH, and inositol hexaphosphate. Yuan Y, Simplaceanu V, Ho NT, Ho C. Biochemistry 49 10606-10615 (2010)
  89. Contribution of alpha140Tyr and beta37Trp to the near-UV CD spectra on quaternary structure transition of human hemoglobin A. Li R, Nagai Y, Nagai M. Chirality 12 216-220 (2000)
  90. Local Fe site structure in the tense-to-relaxed transition in carp deoxyhemoglobin: a XANES (x-ray absorption near edge structure) study. Bianconi A, Congiu-Castellano A, Dell'Ariccia M, Giovannelli A, Morante S, Burattini E, Durham PJ. Proc Natl Acad Sci U S A 83 7736-7740 (1986)
  91. Low frequency resonance Raman spectra of isolated alpha and beta subunits of hemoglobin and their deuterated analogues. Podstawka E, Mak PJ, Kincaid JR, Proniewicz LM. Biopolymers 83 455-466 (2006)
  92. N-terminal acetylation and protonation of individual hemoglobin subunits: position-dependent effects on tetramer strength and cooperativity. Ashiuchi M, Yagami T, Willey RJ, Padovan JC, Chait BT, Popowicz A, Manning LR, Manning JM. Protein Sci 14 1458-1471 (2005)
  93. Oligomerization and ligand binding in a homotetrameric hemoglobin: two high-resolution crystal structures of hemoglobin Bart's (gamma(4)), a marker for alpha-thalassemia. Kidd RD, Baker HM, Mathews AJ, Brittain T, Baker EN. Protein Sci 10 1739-1749 (2001)
  94. Organotin-protein interactions. Binding of triethyltin bromide to cat haemoglobin. Siebenlist KR, Taketa F. Biochem J 233 471-477 (1986)
  95. Rates of energy transfer between tryptophans and hemes in hemoglobin, assuming that the heme is a planar oscillator. Gryczynski Z, Tenenholz T, Bucci E. Biophys J 63 648-653 (1992)
  96. Temperature-jump studies on hemoglobin. Kinetic evidence for a non-quaternary isomerization process in deoxy- and carbonmonoxyhemoglobin. Okonjo KO, Vega-Catalan FJ, Ubochi CI. J Mol Biol 208 347-354 (1989)
  97. X-ray diffraction study of the binding of the antisickling agent 12C79 to human hemoglobin. Wireko FC, Abraham DJ. Proc Natl Acad Sci U S A 88 2209-2211 (1991)
  98. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode. Bosenbeck M, Schweitzer-Stenner R, Dreybrodt W. Biophys J 61 31-41 (1992)
  99. An extended Monod-Wyman-Changeaux-model expressed in terms of the Herzfeld-Stanley formalism applied to oxygen and carbonmonoxide binding curves of hemoglobin trout IV. Schweitzer-Stenner R, Dreybrodt W. Biophys J 55 691-701 (1989)
  100. Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers. Baudin V, Pagnier J, Kiger L, Kister J, Schaad O, Bihoreau MT, Lacaze N, Marden MC, Edelstein SJ, Poyart C. Protein Sci 2 1320-1330 (1993)
  101. Molecular mechanism for ligand stabilization in the mollusc myoglobin possessing the distal Val residue. Yamamoto Y, Iwafune K, Chûjô R, Inoue Y, Imai K, Suzuki T. J Mol Biol 228 343-346 (1992)
  102. Salt, phosphate and the Bohr effect at the hemoglobin beta chain C terminus studied by hydrogen exchange. Louie G, Englander JJ, Englander SW. J Mol Biol 201 765-772 (1988)
  103. Structure and dynamics of dioxygen bound to cobalt and iron heme. Degtyarenko I, Nieminen RM, Rovira C. Biophys J 91 2024-2034 (2006)
  104. The quaternary hemoglobin conformation regulates the formation of the nitrite-induced bioactive intermediate and the dissociation of nitric oxide from this intermediate. Rifkind JM, Nagababu E, Ramasamy S. Nitric Oxide 24 102-109 (2011)
  105. 'Module'-substituted globins: artificial exon shuffling among myoglobin, hemoglobin alpha- and beta-subunits. Wakasugi K, Ishimori K, Morishima I. Biophys Chem 68 265-273 (1997)
  106. A nanochannel array based device for determination of the isoelectric point of confined proteins. Gao HL, Li CY, Ma FX, Wang K, Xu JJ, Chen HY, Xia XH. Phys Chem Chem Phys 14 9460-9467 (2012)
  107. Correspondence of the pK values of oxyHb-titration states detected by resonance Raman scattering to kinetic data of ligand dissociation and association. Schweitzer-Stenner R, Wedekind D, Dreybrodt W. Biophys J 49 1077-1088 (1986)
  108. Detailed NMR analysis of the heme-protein interactions in component IV Glycera dibranchiata monomeric hemoglobin-CO. Alam SL, Volkman BF, Markley JL, Satterlee JD. J Biomol NMR 11 119-133 (1998)
  109. Dynamics of α-Hb chain binding to its chaperone AHSP depends on heme coordination and redox state. Kiger L, Vasseur C, Domingues-Hamdi E, Truan G, Marden MC, Baudin-Creuza V. Biochim Biophys Acta 1840 277-287 (2014)
  110. Hb KOCHI [beta141(H19)Leu-->Val (g.1404 C-->G); 144-->146(HC1-3)Lys-Tyr-His-->0 (g.1413 A-->T)]: a new variant with increased oxygen affinity. Miyazaki A, Nakanishi T, Shimizu A, Mizobuchi M, Yamada Y, Imai K. Hemoglobin 29 1-10 (2005)
  111. Hexa-thiocarbamoyl phenyl PEG5K Hb: vasoactivity and structure: influence of rigidity of the conjugation linkage on the PEGylation induced plasma expander-like solution properties of PEG-Hb adducts. Meng F, Manjula BN, Tsai AG, Cabrales P, Intaglietta M, Smith PK, Prabhakaran M, Acharya SA. Protein J 28 199-212 (2009)
  112. Mössbauer spectroscopy of haemoglobins. Study of the relationship of Fe2+ electronic and molecular structure of the active site. Oshtrakh MI, Semionkin VA. FEBS Lett 208 331-336 (1986)
  113. Picosecond dynamics in haemoglobin from different species: a quasielastic neutron scattering study. Stadler AM, Garvey CJ, Embs JP, Koza MM, Unruh T, Artmann G, Zaccai G. Biochim Biophys Acta 1840 2989-2999 (2014)
  114. Potential Modulation of Vascular Function by Nitric Oxide and Reactive Oxygen Species Released From Erythrocytes. Rifkind JM, Mohanty JG, Nagababu E, Salgado MT, Cao Z. Front Physiol 9 690 (2018)
  115. Protein conformational dynamics of homodimeric hemoglobin revealed by combined time-resolved spectroscopic probes. Choi J, Muniyappan S, Wallis JT, Royer WE, Ihee H. Chemphyschem 11 109-114 (2010)
  116. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule. Domingues-Hamdi E, Vasseur C, Fournier JB, Marden MC, Wajcman H, Baudin-Creuza V. PLoS One 9 e111395 (2014)
  117. Spectroscopic properties of the nitric oxide derivative of ferrous man, horse, and ruminant hemoglobins: a comparative study. Ascenzi P, Coletta M, Desideri A, Petruzzelli R, Polizio F, Bolognesi M, Condò SG, Giardina B. J Inorg Biochem 45 31-37 (1992)
  118. Structural and functional roles of heme binding module in globin proteins: identification of the segment regulating the heme binding structure. Inaba K, Ishimori K, Morishima I. J Mol Biol 283 311-327 (1998)
  119. A 45-ns molecular dynamics simulation of hemoglobin in water by vectorizing and parallelizing COSMOS90 on the earth simulator: dynamics of tertiary and quaternary structures. Saito M, Okazaki I. J Comput Chem 28 1129-1136 (2007)
  120. A DFT study on the relative affinity for oxygen of the alpha and beta subunits of hemoglobin. Maréchal JD, Maseras F, Lledós A, Mouawad L, Perahia D. J Comput Chem 27 1446-1453 (2006)
  121. A myoglobin mutant designed to mimic the oxygen-avid Ascaris suum hemoglobin: elucidation of the distal hydrogen bonding network by solution NMR. Zhang W, Cutruzzolá F, Allocatelli CT, Brunori M, La Mar GN. Biophys J 73 1019-1030 (1997)
  122. Conformational changes in oxyhemoglobin C (Glu beta 6-->Lys) detected by spectroscopic probing. Hirsch RE, Lin MJ, Vidugiris GJ, Huang S, Friedman JM, Nagel RL. J Biol Chem 271 372-375 (1996)
  123. Crystal structure of Lysbeta(1)82-Lysbeta(2)82 crosslinked hemoglobin: a possible allosteric intermediate. Fernandez EJ, Abad-Zapatero C, Olsen KW. J Mol Biol 296 1245-1256 (2000)
  124. Detection of the heme perturbations caused by the quaternary R----T transition in oxyhemoglobin trout IV by resonance Raman scattering. Schweitzer-Stenner R, Wedekind D, Dreybrodt W. Biophys J 55 703-712 (1989)
  125. Differences in coordination states of substituted tyrosine residues and quaternary structures among hemoglobin M probed by resonance Raman spectroscopy. Aki Y, Nagai M, Nagai Y, Imai K, Aki M, Sato A, Kubo M, Nagatomo S, Kitagawa T. J Biol Inorg Chem 15 147-158 (2010)
  126. Features of S-nitrosylation based on statistical analysis and molecular dynamics simulation: cysteine acidity, surrounding basicity, steric hindrance and local flexibility. Cheng S, Shi T, Wang XL, Liang J, Wu H, Xie L, Li Y, Zhao YL. Mol Biosyst 10 2597-2606 (2014)
  127. Fluorescence studies of human semi-beta-hemoglobin assembly. Chiu F, Vasudevan G, Morris A, McDonald MJ. Biochem Biophys Res Commun 242 365-368 (1998)
  128. Heme iron state in various oxyhemoglobins probed using Mössbauer spectroscopy with a high velocity resolution. Oshtrakh MI, Berkovsky AL, Kumar A, Kundu S, Vinogradov AV, Konstantinova TS, Semionkin VA. Biometals 24 501-512 (2011)
  129. Structures and oxygen affinities of crystalline human hemoglobin C (β6 Glu->Lys) in the R and R2 quaternary structures. Shibayama N, Sugiyama K, Park SY. J Biol Chem 286 33661-33668 (2011)
  130. Structures of haemoglobin from woolly mammoth in liganded and unliganded states. Noguchi H, Campbell KL, Ho C, Unzai S, Park SY, Tame JR. Acta Crystallogr D Biol Crystallogr 68 1441-1449 (2012)
  131. alpha-Thalassaemia due to a single codon deletion in the alpha1-globin gene. Computational structural analysis of the new alpha-chain variant. Mutations in brief no. 132. Online. Ayala S, Colomer D, Gelpí JL, Corrons JL. Hum Mutat 11 412 (1998)
  132. Crystal structure of a protein with an artificial exon-shuffling, module M4-substituted chimera hemoglobin beta alpha, at 2.5 A resolution. Shirai T, Fujikake M, Yamane T, Inaba K, Ishimori K, Morishima I. J Mol Biol 287 369-382 (1999)
  133. Effect of the abolition of intersubunit salt bridges on allosteric protein structural dynamics. Choi M, Kim JG, Muniyappan S, Kim H, Kim TW, Lee Y, Lee SJ, Kim SO, Ihee H. Chem Sci 12 8207-8217 (2021)
  134. Ligand binding processes in hemoglobin. Chemical reactivity of iron studied by XANES spectroscopy. Pin S, Valat P, Cortes R, Michalowicz A, Alpert B. Biophys J 48 997-1001 (1985)
  135. Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins. Gryczynski Z, Bucci E, Kuśba J. Photochem Photobiol 58 492-498 (1993)
  136. Mapping of heme-binding domains in soluble guanylyl cyclase beta1 subunit. Namiki S, Hirose K, Iino M. Biochem Biophys Res Commun 288 798-804 (2001)
  137. Molecular mechanism of high altitude respiration: primary structure of a minor hemoglobin component from Tufted duck (Aythya fuligula, Anseriformes). Lutfullah G, Ali SA, Abbasi A. Biochem Biophys Res Commun 326 123-130 (2005)
  138. Monitoring the effect of subunit assembly on the structural flexibility of human alpha apohemoglobin by steady-state fluorescence. O'Malley SM, McDonald MJ. J Protein Chem 13 561-567 (1994)
  139. One- and two-dimensional NMR investigations of the heme pocket in free alpha(CO) chains from human hemoglobin. Schaeffer C, Craescu CT, Mispelter J, Garel MC, Rosa J, Lhoste JM. Eur J Biochem 173 317-325 (1988)
  140. Sequential assignment of the proton NMR spectrum of isolated alpha(CO) chains from human adult hemoglobin. Martineau L, Craescu CT. Eur J Biochem 205 661-670 (1992)
  141. Site mutations disrupt inter-helical H-bonds (alpha14W-alpha67T and beta15W-beta72S) involved in kinetic steps in the hemoglobin R-->T transition without altering the free energies of oxygenation. Tsai CH, Simplaceanu V, Ho NT, Shen TJ, Wang D, Spiro TG, Ho C. Biophys Chem 100 131-142 (2003)
  142. Site-directed mutagenesis in hemoglobin: test of functional homology of the F9 amino acid residues of hemoglobin alpha and beta chains. Mawjood AH, Miyazaki G, Kaneko R, Wada Y, Imai K. Protein Eng 13 113-120 (2000)
  143. Some effects of post-translational N-terminal acetylation of the human embryonic zeta globin protein. Scheepens A, Mould R, Hofmann O, Brittain T. Biochem J 310 ( Pt 2) 597-600 (1995)
  144. Spin label probes of the environment of cysteine beta-93 in hemoglobin. Manoharan PT, Wang JT, Alston K, Rifkind JM. Hemoglobin 14 41-67 (1990)
  145. A new hemoglobin variant, Hb Mito [beta 144(HC 1) Lys----Glu], with increased oxygen affinity. Harano K, Harano T, Ueda S, Ohkushi T, Imai K. FEBS Lett 192 75-78 (1985)
  146. Allostery of the two-state model of hemoglobin studied by ECEPP energy minimization. Seno Y. J Comput Chem 27 701-710 (2006)
  147. Application of isotope exchange based mass spectrometry to understand the mechanism of inhibition of sickle hemoglobin polymerization upon oxygenation. Das R, Mitra A, Bhat V, Mandal AK. J Struct Biol 199 76-83 (2017)
  148. Comparison of human oxyhemoglobin in lyophilized form, red blood cells, and concentrated solution: the features of Mössbauer spectra and heme iron stereochemistry. Oshtrakh MI. J Inorg Biochem 56 221-231 (1994)
  149. Crystal structure of a human embryonic haemoglobin: the carbonmonoxy form of gower II (alpha2 epsilon2) haemoglobin at 2.9 A resolution. Sutherland-Smith AJ, Baker HM, Hofmann OM, Brittain T, Baker EN. J Mol Biol 280 475-484 (1998)
  150. Entropy-driven intermediate steps of oxygenation may regulate the allosteric behavior of hemoglobin. Bucci E, Gryczynski Z, Razynska A, Kwansa H. Biophys J 74 2638-2648 (1998)
  151. Kinetico-mechanistic studies on methemoglobin generation by biologically active thiosemicarbazone iron(III) complexes. Basha MT, Bordini J, Richardson DR, Richardson DR, Martinez M, Bernhardt PV. J Inorg Biochem 162 326-333 (2016)
  152. Metal complexes as allosteric effectors of human hemoglobin: an NMR study of the interaction of the gadolinium(III) bis(m-boroxyphenylamide)diethylenetriaminepentaacetic acid complex with human oxygenated and deoxygenated hemoglobin. Aime S, Digilio G, Fasano M, Paoletti S, Arnelli A, Ascenzi P. Biophys J 76 2735-2743 (1999)
  153. Normal coordinate structural decomposition of the heme distortions of hemoglobin in various quaternary states and bound to allosteric effectors. Laberge M, Yonetani T, Fidy J. Mol Divers 7 15-23 (2003)
  154. Oxygen bonding in human hemoglobin and its isolated subunits: a XANES study. Congiu-Castellano A, Bianconi A, Dell'Ariccia M, Della Longa S, Giovannelli A, Burattini E, Castagnola M. Biochem Biophys Res Commun 147 31-38 (1987)
  155. Raman dispersion spectroscopy probes heme distortions in deoxyHb-trout IV involved in its T-state Bohr effect. Schweitzer-Stenner R, Bosenbeck M, Dreybrodt W. Biophys J 64 1194-1209 (1993)
  156. Recombinant [Phe(beta)63]hemoglobin shows rapid oxidation of the beta chains and low-affinity, non-cooperative oxygen binding to the alpha subunits. Kiger L, Baudin V, Desbois A, Pagnier J, Kister J, Griffon N, Henry Y, Poyart C, Marden MC. Eur J Biochem 243 365-373 (1997)
  157. Resonance Raman study of deoxy and ligated (O2 and CO) mesoheme IX-reconstituted myoglobin, hemoglobin and its alpha and beta subunits. Podstawka E, Proniewicz LM. J Inorg Biochem 98 1502-1512 (2004)
  158. Structural and mutagenic approach to create human serum albumin-based oxygen carrier and photosensitizer. Komatsu T, Nakagawa A, Qu X. Drug Metab Pharmacokinet 24 287-299 (2009)
  159. The influence of structural variations in the F- and FG-helix of the beta-subunit modified oxyHb-NES on the heme structure detected by resonance Raman spectroscopy. Schweitzer-Stenner R, Wedekind D, Dreybrodt W. Eur Biophys J 17 87-100 (1989)
  160. Acetaminophen interacts with human hemoglobin: optical, physical and molecular modeling studies. Seal P, Sikdar J, Roy A, Haldar R. J Biomol Struct Dyn 35 1307-1321 (2017)
  161. Allosteric effects of chloride ions at the intradimeric alpha1beta1 and alpha2beta2 interfaces of human hemoglobin. Rujan IN, Russu IM. Proteins 49 413-419 (2002)
  162. Cluster and propensity based approximation of a network. Ranola JM, Langfelder P, Lange K, Horvath S. BMC Syst Biol 7 21 (2013)
  163. Conjugation of para-benzoquinone of Cigarette Smoke with Human Hemoglobin Leads to Unstable Tetramer and Reduced Cooperative Oxygen Binding. Mitra A, Mandal AK. J Am Soc Mass Spectrom 29 2048-2058 (2018)
  164. Crystallization of the rainbow trout (Salmo gairdneri) haemoglobin IV. Dodson GG, Richard VR, Tolley SP, Waller DA, Weber RE. J Mol Biol 211 691-692 (1990)
  165. Direct observation of conformational population shifts in crystalline human hemoglobin. Shibayama N, Ohki M, Tame JRH, Park SY. J Biol Chem 292 18258-18269 (2017)
  166. Effect of Occluded Ligand Migration on the Kinetics and Structural Dynamics of Homodimeric Hemoglobin. Kim H, Kim JG, Muniyappan S, Kim TW, Lee SJ, Ihee H. J Phys Chem B 124 1550-1556 (2020)
  167. Hemoglobins with multiple reactive sulphydryl groups: the reaction of dog hemoglobin with 5,5'-dithiobis (2-nitrobenzoate). Okonjo KO, Adejoro IA. J Protein Chem 12 33-37 (1993)
  168. Interactions at the alpha 1 beta 1 interface in hemoglobin: a single amino acid change affects dimer ratio in transgenic mice expressing human hemoglobin. White SP, Birch P, Kumar R. Hemoglobin 18 413-426 (1994)
  169. Reversible reaction of 5,5'-dithiobis(2-nitrobenzoate) with the CysF9[93]beta sulfhydryl groups of the hemoglobins of the domestic cat: variation of the equilibrium and reverse rate constants with pH. Okonjo KO, Fodeke AA, Kehinde AT. Biophys Chem 121 65-73 (2006)
  170. Structure of Greyhound hemoglobin: origin of high oxygen affinity. Bhatt VS, Zaldívar-López S, Harris DR, Couto CG, Wang PG, Palmer AF. Acta Crystallogr D Biol Crystallogr 67 395-402 (2011)
  171. Study of the relationship of small variations of the molecular structure and the iron state in iron containing proteins by Mössbauer spectroscopy: biomedical approach. Oshtrakh MI. Spectrochim Acta A Mol Biomol Spectrosc 60 217-234 (2004)
  172. A new relaxed state in horse methemoglobin characterized by crystallographic studies. Sankaranarayanan R, Biswal BK, Vijayan M. Proteins 60 547-551 (2005)
  173. Bohr effect of human hemoglobin A: magnitude of negative contributions determined by the equilibrium between two tertiary structures. Okonjo KO, Olatunde AM, Fodeke AA, Babalola JO. Biophys Chem 190-191 41-49 (2014)
  174. Contribution of arginine (HC3) 141 alpha to the Bohr effect of the fourth binding step in the reaction of ligand with human hemoglobin. Kwiatkowski LD, Noble RW. Proteins 2 72-77 (1987)
  175. Dynamical footprint of falcipain-2 catalytic triad in hemoglobin-β-bound state. Omotuyi IO, Hamada T. J Biomol Struct Dyn 33 1027-1036 (2015)
  176. H2O2 determination by a biosensor based on hemoglobin. Sezgintürk MK, Dinçkaya E. Prep Biochem Biotechnol 39 1-10 (2009)
  177. Hemoglobin Einstein: semisynthetic deletion in the B-helix of the alpha-chain. Srinivasulu S, Manjula BN, Nagel RL, Tsai CH, Ho C, Prabhakaran M, Acharya SA. Protein Sci 13 1266-1275 (2004)
  178. Hemoglobins with multiple reactive sulphydryl groups: the reaction of pigeon hemoglobin with 5,5'-dithiobis (2-nitrobenzoic acid). Okonjo KO, Okia TO. J Protein Chem 12 639-646 (1993)
  179. Molecular dynamics of a hemoglobin crosslinking reaction. Pavlik PA, Boyd MK, Olsen KW. Biopolymers 39 615-618 (1996)
  180. Mutual effects of proton and sodium chloride on oxygenation of liganded human hemoglobin. Lepeshkevich SV, Dzhagarov BM. FEBS J 272 6109-6119 (2005)
  181. Proton electron nuclear double resonance from nitrosyl horse heart myoglobin: the role of His-E7 and Val-E11. Flores M, Wajnberg E, Bemski G. Biophys J 78 2107-2115 (2000)
  182. Reversible reaction of 5,5'-dithiobis(2-nitrobenzoate) with the hemoglobins of the domestic cat: acetylation of NH3+ terminal group of the beta chain transforms the complex pH dependence of the forward apparent second order rate constant to a simple form. Okonjo KO, Fodeke AA. Biophys Chem 119 196-204 (2006)
  183. Structure of liganded T-state haemoglobin from cat (Felis silvestris catus), a low oxygen-affinity species, in two different crystal forms. Balasubramanian M, Sathya Moorthy P, Neelagandan K, Ramadoss R, Kolatkar PR, Ponnuswamy MN. Acta Crystallogr D Biol Crystallogr 70 1898-1906 (2014)
  184. Transition of hemoglobin between two tertiary conformations: determination of equilibrium and thermodynamic parameters from the reaction of 5,5'-dithiobis(2-nitrobenzoate) with the CysF9[93]beta sulfhydryl group. Okonjo KO, Adediji AT, Fodeke AA, Adeboye O, Ezeh CV. Biophys Chem 128 56-62 (2007)
  185. XANES spectroscopy sensitivity to small electronic changes. Case of carp azidomethemoglobin. Pin S, Le Tilly V, Alpert B, Cortes R. FEBS Lett 242 401-404 (1989)
  186. Zinc finger nucleases for targeted mutagenesis and repair of the sickle-cell disease mutation: An in-silico study. Wayengera M. BMC Blood Disord 12 5 (2012)
  187. pH-dependent structural changes in haemoglobin component V from the midge larva Propsilocerus akamusi (Orthocladiinae, Diptera). Kuwada T, Hasegawa T, Takagi T, Sato I, Shishikura F. Acta Crystallogr D Biol Crystallogr 66 258-267 (2010)
  188. A Clinical Update of the Hb Siirt [β27(B9)Ala→Gly; HBB: c.83C>G] Hemoglobin Variant. Cappabianca MP, Colosimo A, Sabatucci A, Dainese E, Di Biagio P, Piscitelli R, Sarra O, Zei D, Amato A. Hemoglobin 41 53-55 (2017)
  189. Binding of ibuprofen to human hemoglobin: elucidation of their molecular recognition by spectroscopy, calorimetry, and molecular modeling techniques. Seal P, Sikdar J, Roy A, Haldar R. J Biomol Struct Dyn 36 3137-3154 (2018)
  190. Bohr effect of human hemoglobin: Separation of tertiary and quaternary contributions based on the Wyman equation. Okonjo KO. Biophys Chem 228 87-97 (2017)
  191. Computationally Guided Redesign of a Heme-free Cytochrome with Native-like Structure and Stability. Hoffnagle AM, Eng VH, Markel U, Tezcan FA. Biochemistry 61 2063-2072 (2022)
  192. Effect of the tertiary structure alteration by ligation on the interface contacts between subunits of hemoglobin. Arata Y. Biochim Biophys Acta 1247 24-34 (1995)
  193. Involvement of the distal Arg residue in Cl⁻ binding of midge larval haemoglobin. Kuwada T, Hasegawa T, Takagi T, Sakae T, Sato I, Shishikura F. Acta Crystallogr D Biol Crystallogr 67 488-495 (2011)
  194. Local energetic frustration conservation in protein families and superfamilies. Freiberger MI, Ruiz-Serra V, Pontes C, Romero-Durana M, Galaz-Davison P, Ramírez-Sarmiento CA, Schuster CD, Marti MA, Wolynes PG, Ferreiro DU, Parra RG, Valencia A. Nat Commun 14 8379 (2023)
  195. Movements at the hemoglobin A-hemes and their role in ligand binding, analyzed by X-ray crystallography. Dodson E, Dodson G. Biopolymers 91 1056-1063 (2009)
  196. Purification and crystallization of haemoglobin from donkey (Equus asinus). Balasundaresan D, Saraboji K, Ponnuswamy MN. Biochem Biophys Res Commun 313 466-467 (2004)
  197. Tertiary conformational transition in sheep hemoglobins induced by reaction with 5,5 -dithiobis(2-nitrobenzoate) and by binding of inositol hexakisphosphate. Okonjo KO, Adeogun IA, Babalola JO. Biophys Chem 146 65-75 (2010)
  198. The Relationship between APOL1 Structure and Function: Clinical Implications. Madhavan SM, Buck M. Kidney360 2 134-140 (2021)
  199. The effect of organic cosolvents on the oxygen affinity of fetal hemoglobin. Relevance of protein-solvent interactions to the functional properties. Militello V, Vitrano E, Cupane A. Biophys Chem 39 161-169 (1991)
  200. Crystal structure of haemoglobin from donkey (Equus asinus) at 3A resolution. Balasundaresan D, Saraboji K, Ponnuswamy MN. Biochimie 88 719-723 (2006)
  201. Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving-Williams Behavior. Choi TS, Tezcan FA. J Am Chem Soc 144 18090-18100 (2022)
  202. Effect of aromatic isothiocyanates on the functional properties of human hemoglobin. Role of the stereochemistry of the charged group. Ippoliti R, Currell D, Lendaro E, Bellelli A, Castagnola M, Bolognesi M, Brunori M. Biophys Chem 37 293-302 (1990)
  203. Fluorescence studies of normal and sickle beta apohemoglobin self-association. O'Malley SM, McDonald MJ. J Protein Chem 13 585-590 (1994)
  204. Reasons for the cooperative effects in the haemoglobin case. Valle G. Med Hypotheses 54 582-584 (2000)
  205. Sequential assignment of proton resonances in the NMR spectrum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket. Martineau L, Craescu CT. Eur J Biochem 214 383-393 (1993)
  206. Site-specific semisynthetic variant of human hemoglobin. Hefta SA, Lyle SB, Busch MR, Harris DE, Matthew JB, Gurd FR. Proc Natl Acad Sci U S A 85 709-713 (1988)
  207. Structural studies on a low oxygen affinity hemoglobin from mammalian species: sheep (Ovis aries). Kamariah N, Ponnuraj SM, Moovarkumudalvan B, Ponnuswamy MN. Biochem Biophys Res Commun 450 36-41 (2014)
  208. Symmetry distortion in the human hemoglobin tetramer induced by asymmetric ligation. Shibayama N. FEBS Lett 586 74-78 (2012)
  209. The capsaicin binding affinity of wildtype and mutant TRPV1 ion channels. Li S, Zheng J. J Biol Chem 299 105268 (2023)


Related citations provided by authors (1)

  1. The Iron-Oxygen Bond in Human Oxyhaemoglobin. Shaanan B Nature 296 683- (1982)