1grh Citations

Inhibition of human glutathione reductase by the nitrosourea drugs 1,3-bis(2-chloroethyl)-1-nitrosourea and 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea. A crystallographic analysis.

Eur J Biochem 171 193-8 (1988)

Abstract

Glutathione reductase from human erythrocytes was inhibited by incubation with the drugs 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea (HeCNU) under quasi-physiological conditions. For reference purposes, iodoacetamide was used for inactivating alkylation of the enzyme. In each case the modified glutathione reductase was crystallized and its structure determined. These analyses showed that in all experiments the enzyme had reacted at the distal sulfur, that is at the thiol of Cys-58, and virtually nowhere else in the visible structure. The electron density of the HeCNU derivative at 0.3 nm resolution is consistent with a 2-hydroxyethyl group. This alkyl moiety has recently been identified by chemical analysis [Schirmer, R. H., Schöllhammer, T., Eisenbrand, G. and Krauth-Siegel, R. L. (1987) Free Radical Res. Commun. 3, 3-12]. The 0.2 nm resolution electron-density map of the BCNU-derivatized enzyme cannot be explained by a 2-hydroxyethyl group. Instead the modification appears as a carbamoyl moiety containing at least five non-hydrogen atoms. In this derivative the distal cysteine is forced into an unusual conformation.

Reviews - 1grh mentioned but not cited (1)

  1. Thioredoxin reductase and its inhibitors. Saccoccia F, Angelucci F, Boumis G, Carotti D, Desiato G, Miele AE, Bellelli A. Curr Protein Pept Sci 15 621-646 (2014)


Reviews citing this publication (6)

  1. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Int. J. Parasitol. 34 163-189 (2004)
  2. The thioredoxin system--from science to clinic. Gromer S, Urig S, Becker K. Med Res Rev 24 40-89 (2004)
  3. Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. Krauth-Siegel RL, Bauer H, Schirmer RH. Angew. Chem. Int. Ed. Engl. 44 690-715 (2005)
  4. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug Metab. Rev. 37 41-213 (2005)
  5. Glutathione--functions and metabolism in the malarial parasite Plasmodium falciparum. Becker K, Rahlfs S, Nickel C, Schirmer RH. Biol. Chem. 384 551-566 (2003)
  6. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment. Noble M, Mayer-Pröschel M, Li Z, Dong T, Cui W, Pröschel C, Ambeskovic I, Dietrich J, Han R, Yang YM, Folts C, Stripay J, Chen HY, Stevens BM. Free Radic. Biol. Med. 79 300-323 (2015)

Articles citing this publication (33)

  1. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Galter D, Mihm S, Dröge W. Eur. J. Biochem. 221 639-648 (1994)
  2. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. Karplus PA, Schulz GE. J. Mol. Biol. 210 163-180 (1989)
  3. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Witte AB, Anestål K, Jerremalm E, Ehrsson H, Arnér ES. Free Radic. Biol. Med. 39 696-703 (2005)
  4. Glutathione regulation of tumor necrosis factor-alpha-induced NF-kappa B activation in skeletal muscle-derived L6 cells. Sen CK, Khanna S, Reznick AZ, Roy S, Packer L. Biochem. Biophys. Res. Commun. 237 645-649 (1997)
  5. Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Jockers-Scherübl MC, Schirmer RH, Krauth-Siegel RL. Eur. J. Biochem. 180 267-272 (1989)
  6. A crystallographic study of the glutathione binding site of glutathione reductase at 0.3-nm resolution. Karplus PA, Pai EF, Schulz GE. Eur. J. Biochem. 178 693-703 (1989)
  7. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Bishop GM, Dringen R, Robinson SR. Free Radic. Biol. Med. 42 1222-1230 (2007)
  8. Thiram-induced cytotoxicity is accompanied by a rapid and drastic oxidation of reduced glutathione with consecutive lipid peroxidation and cell death. Cereser C, Boget S, Parvaz P, Revol A. Toxicology 163 153-162 (2001)
  9. Redox priming of the insulin receptor beta-chain associated with altered tyrosine kinase activity and insulin responsiveness in the absence of tyrosine autophosphorylation. Schmid E, El Benna J, Galter D, Klein G, Dröge W. FASEB J. 12 863-870 (1998)
  10. Cloning and sequencing of mammalian glutathione reductase cDNA. Tutic M, Lu XA, Schirmer RH, Werner D. Eur. J. Biochem. 188 523-528 (1990)
  11. Inhibition of human glutathione reductase by S-nitrosoglutathione. Becker K, Gui M, Schirmer RH. Eur. J. Biochem. 234 472-478 (1995)
  12. Acute depletion of reduced glutathione causes extensive carbonylation of rat brain proteins. Bizzozero OA, Ziegler JL, De Jesus G, Bolognani F. J. Neurosci. Res. 83 656-667 (2006)
  13. The 58 kDa mouse selenoprotein is a BCNU-sensitive thioredoxin reductase. Gromer S, Schirmer RH, Becker K. FEBS Lett. 412 318-320 (1997)
  14. Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor. Savvides SN, Karplus PA. J. Biol. Chem. 271 8101-8107 (1996)
  15. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism. Mitozo PA, de Souza LF, Loch-Neckel G, Flesch S, Maris AF, Figueiredo CP, Dos Santos AR, Farina M, Dafre AL. Free Radic. Biol. Med. 51 69-77 (2011)
  16. Characterization of a novel dithiocarbamate glutathione reductase inhibitor and its use as a tool to modulate intracellular glutathione. Seefeldt T, Zhao Y, Chen W, Raza AS, Carlson L, Herman J, Stoebner A, Hanson S, Foll R, Guan X. J. Biol. Chem. 284 2729-2737 (2009)
  17. Kinetic characterization of glutathione reductase from the malarial parasite Plasmodium falciparum. Comparison with the human enzyme. Bohme CC, Arscott LD, Becker K, Schirmer RH, Williams CH. J. Biol. Chem. 275 37317-37323 (2000)
  18. Purification and characterization of lipoamide dehydrogenase from Trypanosoma cruzi. Lohrer H, Krauth-Siegel RL. Eur. J. Biochem. 194 863-869 (1990)
  19. Differential inhibition of cellular glutathione reductase activity by isocyanates generated from the antitumor prodrugs Cloretazine and BCNU. Rice KP, Penketh PG, Shyam K, Sartorelli AC. Biochem. Pharmacol. 69 1463-1472 (2005)
  20. Selective and irreversible inhibition of glutathione reductase in vitro by carbamate thioester conjugates of methyl isocyanate. Jochheim CM, Baillie TA. Biochem. Pharmacol. 47 1197-1206 (1994)
  21. Random silent mutagenesis in the initial triplets of the coding region: a technique for adapting human glutathione reductase-encoding cDNA to expression in Escherichia coli. Bücheler US, Werner D, Schirmer RH. Gene 96 271-276 (1990)
  22. The purification and properties of glutathione reductase from the cestode Moniezia expansa. McCallum MJ, Barrett J. Int. J. Biochem. Cell Biol. 27 393-401 (1995)
  23. Fluorescence detection of glutathione reductase activity based on deoxyribonucleic acid-templated silver nanoclusters. Zhu S, Zhao XE, Zhang W, Liu Z, Qi W, Anjum S, Xu G. Anal. Chim. Acta 786 111-115 (2013)
  24. Effect of carbamate thioester derivatives of methyl- and 2-chloroethyl isocyanate on glutathione levels and glutathione reductase activity in isolated rat hepatocytes. Kassahun K, Jochheim CM, Baillie TA. Biochem. Pharmacol. 48 587-594 (1994)
  25. In vitro effects of some antibiotics on glutathione reductase from sheep liver. Erat M, Ciftçi M. J Enzyme Inhib Med Chem 18 545-550 (2003)
  26. Cool-1-mediated inhibition of c-Cbl modulates multiple critical properties of glioblastomas, including the ability to generate tumors in vivo. Stevens BM, Folts CJ, Cui W, Bardin AL, Walter K, Carson-Walter E, Vescovi A, Noble M. Stem Cells 32 1124-1135 (2014)
  27. Profiling patterns of glutathione reductase inhibition by the natural product illudin S and its acylfulvene analogues. Liu X, Sturla SJ. Mol Biosyst 5 1013-1024 (2009)
  28. In vitro inactivation of yeast glutathione reductase by tetramethylthiuram disulphide. Elskens MT, Penninckx MJ. Eur. J. Biochem. 231 667-672 (1995)
  29. Synthesis and evaluation of substrate analogue inhibitors of trypanothione reductase. Duyzend MH, Clark CT, Simmons SL, Johnson WB, Larson AM, Leconte AM, Wills AW, Ginder-Vogel M, Wilhelm AK, Czechowicz JA, Alberg DG. J Enzyme Inhib Med Chem 27 784-794 (2012)
  30. Identification and quantitative determination of glutathione-related urinary metabolites of fotemustine, a new anti-cancer agent. Brakenhoff JP, Commandeur JN, Lamorée MH, Dubelaar AC, van Baar BL, Lucas C, Vermeulen NP. Xenobiotica 23 935-947 (1993)
  31. Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools. Pezacki AT, Matier CD, Gu X, Kummelstedt E, Bond SE, Torrente L, Jordan-Sciutto KL, DeNicola GM, Su TA, Brady DC, Chang CJ. Proc Natl Acad Sci U S A 119 e2202736119 (2022)
  32. Characterisation of naturally occurring isothiocyanates as glutathione reductase inhibitors. Li X, Ni M, Xu X, Chen W. J Enzyme Inhib Med Chem 35 1773-1780 (2020)
  33. Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Su Z, Burchfield JG, Yang P, Humphrey SJ, Yang G, Francis D, Yasmin S, Shin SY, Norris DM, Kearney AL, Astore MA, Scavuzzo J, Fisher-Wellman KH, Wang QP, Parker BL, Neely GG, Vafaee F, Chiu J, Yeo R, Hogg PJ, Fazakerley DJ, Nguyen LK, Kuyucak S, James DE. Nat Commun 10 5486 (2019)