1fbv Citations

Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases.

Cell 102 533-9 (2000)
Cited: 580 times
EuropePMC logo PMID: 10966114

Abstract

Ubiquitin-protein ligases (E3s) regulate diverse cellular processes by mediating protein ubiquitination. The c-Cbl proto-oncogene is a RING family E3 that recognizes activated receptor tyrosine kinases, promotes their ubiquitination by a ubiquitin-conjugating enzyme (E2) and terminates signaling. The crystal structure of c-Cbl bound to a cognate E2 and a kinase peptide shows how the RING domain recruits the E2. A comparison with a HECT family E3-E2 complex indicates that a common E2 motif is recognized by the two E3 families. The structure reveals a rigid coupling between the peptide binding and the E2 binding domains and a conserved surface channel leading from the peptide to the E2 active site, suggesting that RING E3s may function as scaffolds that position the substrate and the E2 optimally for ubiquitin transfer.

Reviews - 1fbv mentioned but not cited (14)

  1. Building ubiquitin chains: E2 enzymes at work. Ye Y, Rape M. Nat. Rev. Mol. Cell Biol. 10 755-764 (2009)
  2. E2s: structurally economical and functionally replete. Wenzel DM, Stoll KE, Klevit RE. Biochem. J. 433 31-42 (2011)
  3. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Spratt DE, Walden H, Shaw GS. Biochem. J. 458 421-437 (2014)
  4. Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Capili AD, Lima CD. Curr. Opin. Struct. Biol. 17 726-735 (2007)
  5. Expanding the ubiquitin code through post-translational modification. Herhaus L, Dikic I. EMBO Rep. 16 1071-1083 (2015)
  6. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat. Rev. Mol. Cell Biol. 17 626-642 (2016)
  7. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol. 11 65 (2013)
  8. Allosteric conformational barcodes direct signaling in the cell. Nussinov R, Ma B, Tsai CJ, Csermely P. Structure 21 1509-1521 (2013)
  9. Cell regulation by phosphotyrosine-targeted ubiquitin ligases. Cooper JA, Kaneko T, Li SS. Mol. Cell. Biol. 35 1886-1897 (2015)
  10. Towards the computational design of protein post-translational regulation. Strumillo M, Beltrao P. Bioorg. Med. Chem. 23 2877-2882 (2015)
  11. An inventory of crosstalk between ubiquitination and other post-translational modifications in orchestrating cellular processes. Barbour H, Nkwe NS, Estavoyer B, Messmer C, Gushul-Leclaire M, Villot R, Uriarte M, Boulay K, Hlayhel S, Farhat B, Milot E, Mallette FA, Daou S, Affar EB. iScience 26 106276 (2023)
  12. Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Gundogdu M, Walden H. Protein Sci 28 1758-1770 (2019)
  13. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  14. Sugar-Recognizing Ubiquitin Ligases: Action Mechanisms and Physiology. Yoshida Y, Mizushima T, Tanaka K. Front Physiol 10 104 (2019)

Articles - 1fbv mentioned but not cited (70)

  1. Structural classification of zinc fingers: survey and summary. Krishna SS, Majumdar I, Grishin NV. Nucleic Acids Res. 31 532-550 (2003)
  2. Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA. Proc. Natl. Acad. Sci. U.S.A. 101 10810-10814 (2004)
  3. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Scrima A, Konícková R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thomä NH. Cell 135 1213-1223 (2008)
  4. Structural insights into the U-box, a domain associated with multi-ubiquitination. Ohi MD, Vander Kooi CW, Rosenberg JA, Chazin WJ, Gould KL. Nat. Struct. Biol. 10 250-255 (2003)
  5. Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Pruneda JN, Littlefield PJ, Soss SE, Nordquist KA, Chazin WJ, Brzovic PS, Klevit RE. Mol. Cell 47 933-942 (2012)
  6. Structure of the human Parkin ligase domain in an autoinhibited state. Wauer T, Komander D. EMBO J. 32 2099-2112 (2013)
  7. The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Dentice M, Bandyopadhyay A, Gereben B, Callebaut I, Christoffolete MA, Kim BW, Nissim S, Mornon JP, Zavacki AM, Zeöld A, Capelo LP, Curcio-Morelli C, Ribeiro R, Harney JW, Tabin CJ, Bianco AC. Nat. Cell Biol. 7 698-705 (2005)
  8. The mechanism of OTUB1-mediated inhibition of ubiquitination. Wiener R, Zhang X, Wang T, Wolberger C. Nature 483 618-622 (2012)
  9. Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network. Markson G, Kiel C, Hyde R, Brown S, Charalabous P, Bremm A, Semple J, Woodsmith J, Duley S, Salehi-Ashtiani K, Vidal M, Komander D, Serrano L, Lehner P, Sanderson CM. Genome Res. 19 1905-1911 (2009)
  10. MMDB: Entrez's 3D-structure database. Chen J, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler-Bauer A, Marchler GH, Mazumder R, Nikolskaya AN, Rao BS, Panchenko AR, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH. Nucleic Acids Res. 31 474-477 (2003)
  11. Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT. Nat. Struct. Mol. Biol. 19 184-192 (2012)
  12. Treble clef finger--a functionally diverse zinc-binding structural motif. Grishin NV. Nucleic Acids Res. 29 1703-1714 (2001)
  13. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Ayinampudi V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN. J. Biol. Chem. 288 7803-7814 (2013)
  14. Templates are available to model nearly all complexes of structurally characterized proteins. Kundrotas PJ, Zhu Z, Janin J, Vakser IA. Proc. Natl. Acad. Sci. U.S.A. 109 9438-9441 (2012)
  15. Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Li W, Tu D, Li L, Wollert T, Ghirlando R, Brunger AT, Ye Y. Proc. Natl. Acad. Sci. U.S.A. 106 3722-3727 (2009)
  16. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. Xu Z, Kohli E, Devlin KI, Bold M, Nix JC, Misra S. BMC Struct. Biol. 8 26 (2008)
  17. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Yunus AA, Lima CD. Mol. Cell 35 669-682 (2009)
  18. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Duda DM, Olszewski JL, Schuermann JP, Kurinov I, Miller DJ, Nourse A, Alpi AF, Schulman BA. Structure 21 1030-1041 (2013)
  19. A Ubl/ubiquitin switch in the activation of Parkin. Sauvé V, Lilov A, Seirafi M, Vranas M, Rasool S, Kozlov G, Sprules T, Wang J, Trempe JF, Gehring K. EMBO J. 34 2492-2505 (2015)
  20. A human ubiquitin conjugating enzyme (E2)-HECT E3 ligase structure-function screen. Sheng Y, Hong JH, Doherty R, Srikumar T, Shloush J, Avvakumov GV, Walker JR, Xue S, Neculai D, Wan JW, Kim SK, Arrowsmith CH, Raught B, Dhe-Paganon S. Mol. Cell Proteomics 11 329-341 (2012)
  21. Molecular mechanisms of ubiquitin-dependent membrane traffic. Hurley JH, Stenmark H. Annu Rev Biophys 40 119-142 (2011)
  22. Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. Kadlec J, Guilligay D, Ravelli RB, Cusack S. RNA 12 1817-1824 (2006)
  23. Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F. Proc. Natl. Acad. Sci. U.S.A. 108 20579-20584 (2011)
  24. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Cole AR, Lewis LP, Walden H. Nat. Struct. Mol. Biol. 17 294-298 (2010)
  25. Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase. Mizushima T, Yoshida Y, Kumanomidou T, Hasegawa Y, Suzuki A, Yamane T, Tanaka K. Proc. Natl. Acad. Sci. U.S.A. 104 5777-5781 (2007)
  26. As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Mao JH, Sun XY, Liu JX, Zhang QY, Liu P, Huang QH, Li KK, Chen Q, Chen Z, Chen SJ. Proc. Natl. Acad. Sci. U.S.A. 107 21683-21688 (2010)
  27. Structure of the human FANCL RING-Ube2T complex reveals determinants of cognate E3-E2 selection. Hodson C, Purkiss A, Miles JA, Walden H. Structure 22 337-344 (2014)
  28. The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation. Liu J, Nussinov R. PLoS Comput. Biol. 5 e1000527 (2009)
  29. Flexible cullins in cullin-RING E3 ligases allosterically regulate ubiquitination. Liu J, Nussinov R. J. Biol. Chem. 286 40934-40942 (2011)
  30. E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Huang H, Ceccarelli DF, Orlicky S, St-Cyr DJ, Ziemba A, Garg P, Plamondon S, Auer M, Sidhu S, Marinier A, Kleiger G, Tyers M, Sicheri F. Nat. Chem. Biol. 10 156-163 (2014)
  31. Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Kiel C, Serrano L. Mol. Syst. Biol. 10 727 (2014)
  32. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms. Dove KK, Stieglitz B, Duncan ED, Rittinger K, Klevit RE. EMBO Rep. 17 1221-1235 (2016)
  33. E2 conjugating enzyme selectivity and requirements for function of the E3 ubiquitin ligase CHIP. Soss SE, Yue Y, Dhe-Paganon S, Chazin WJ. J. Biol. Chem. 286 21277-21286 (2011)
  34. Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases. Liu J, Nussinov R. J. Mol. Biol. 396 1508-1523 (2010)
  35. Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4. Benirschke RC, Thompson JR, Nominé Y, Wasielewski E, Juranić N, Macura S, Hatakeyama S, Nakayama KI, Botuyan MV, Mer G. Structure 18 955-965 (2010)
  36. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade. Papaleo E, Casiraghi N, Arrigoni A, Vanoni M, Coccetti P, De Gioia L. PLoS ONE 7 e40786 (2012)
  37. Rbx1 flexible linker facilitates cullin-RING ligase function before neddylation and after deneddylation. Liu J, Nussinov R. Biophys. J. 99 736-744 (2010)
  38. Structure, interactions, and dynamics of the RING domain from human TRAF6. Mercier P, Lewis MJ, Hau DD, Saltibus LF, Xiao W, Spyracopoulos L. Protein Sci. 16 602-614 (2007)
  39. Bi-directional SIFT predicts a subset of activating mutations. Lee W, Zhang Y, Mukhyala K, Lazarus RA, Zhang Z. PLoS ONE 4 e8311 (2009)
  40. Functional characterization of residues required for the herpes simplex virus 1 E3 ubiquitin ligase ICP0 to interact with the cellular E2 ubiquitin-conjugating enzyme UBE2D1 (UbcH5a). Vanni E, Gatherer D, Tong L, Everett RD, Boutell C. J. Virol. 86 6323-6333 (2012)
  41. Structural Studies of HHARI/UbcH7∼Ub Reveal Unique E2∼Ub Conformational Restriction by RBR RING1. Dove KK, Olszewski JL, Martino L, Duda DM, Wu XS, Miller DJ, Reiter KH, Rittinger K, Schulman BA, Klevit RE. Structure 25 890-900.e5 (2017)
  42. SAMPLEX: automatic mapping of perturbed and unperturbed regions of proteins and complexes. Krzeminski M, Loth K, Boelens R, Bonvin AM. BMC Bioinformatics 11 51 (2010)
  43. Ser(120) of Ubc2/Rad6 regulates ubiquitin-dependent N-end rule targeting by E3{alpha}/Ubr1. Kumar B, Lecompte KG, Klein JM, Haas AL. J. Biol. Chem. 285 41300-41309 (2010)
  44. Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7). Arai R, Yoshikawa S, Murayama K, Imai Y, Takahashi R, Shirouzu M, Yokoyama S. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 330-334 (2006)
  45. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation. Li M, Kales SC, Ma K, Shoemaker BA, Crespo-Barreto J, Cangelosi AL, Lipkowitz S, Panchenko AR. Cancer Res. 76 561-571 (2016)
  46. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL. Miles JA, Frost MG, Carroll E, Rowe ML, Howard MJ, Sidhu A, Chaugule VK, Alpi AF, Walden H. J. Biol. Chem. 290 20995-21006 (2015)
  47. Insights into Ubiquitination from the Unique Clamp-like Binding of the RING E3 AO7 to the E2 UbcH5B. Li S, Liang YH, Mariano J, Metzger MB, Stringer DK, Hristova VA, Li J, Randazzo PA, Tsai YC, Ji X, Weissman AM. J. Biol. Chem. 290 30225-30239 (2015)
  48. Cullin neddylation may allosterically tune polyubiquitin chain length and topology. Onel M, Sumbul F, Liu J, Nussinov R, Haliloglu T. Biochem J 474 781-795 (2017)
  49. Fertilization in C. elegans requires an intact C-terminal RING finger in sperm protein SPE-42. Wilson LD, Sackett JM, Mieczkowski BD, Richie AL, Thoemke K, Rumbley JN, Kroft TL. BMC Dev. Biol. 11 10 (2011)
  50. Peptide truncation leads to a twist and an unusual increase in affinity for casitas B-lineage lymphoma tyrosine kinase binding domain. Kumar EA, Yuan Z, Palermo NY, Dong L, Ahmad G, Lokesh GL, Kolar C, Kizhake S, Borgstahl GE, Band H, Natarajan A. J. Med. Chem. 55 3583-3587 (2012)
  51. The paradox of conformational constraint in the design of Cbl(TKB)-binding peptides. Kumar EA, Chen Q, Kizhake S, Kolar C, Kang M, Chang CE, Borgstahl GE, Natarajan A. Sci Rep 3 1639 (2013)
  52. Filamins but not Janus kinases are substrates of the ASB2α cullin-ring E3 ubiquitin ligase in hematopoietic cells. Lamsoul I, Erard M, van der Ven PF, Lutz PG. PLoS ONE 7 e43798 (2012)
  53. Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Yuan L, Lv Z, Atkison JH, Olsen SK. Nat Commun 8 211 (2017)
  54. Structural mechanism for the recognition and ubiquitination of a single nucleosome residue by Rad6-Bre1. Gallego LD, Ghodgaonkar Steger M, Polyansky AA, Schubert T, Zagrovic B, Zheng N, Clausen T, Herzog F, Köhler A. Proc. Natl. Acad. Sci. U.S.A. 113 10553-10558 (2016)
  55. The flexible C-terminal arm of the Lassa arenavirus Z-protein mediates interactions with multiple binding partners. May ER, Armen RS, Mannan AM, Brooks CL. Proteins 78 2251-2264 (2010)
  56. Annotating Mutational Effects on Proteins and Protein Interactions: Designing Novel and Revisiting Existing Protocols. Li M, Goncearenco A, Panchenko AR. Methods Mol. Biol. 1550 235-260 (2017)
  57. Comprehensively surveying structure and function of RING domains from Drosophila melanogaster. Ying M, Huang X, Zhao H, Wu Y, Wan F, Huang C, Jie K. PLoS ONE 6 e23863 (2011)
  58. Juvenile myelomonocytic leukemia due to a germline CBL Y371C mutation: 35-year follow-up of a large family. Pathak A, Pemov A, McMaster ML, Dewan R, Ravichandran S, Pak E, Dutra A, Lee HJ, Vogt A, Zhang X, Yeager M, Anderson S, Kirby M, NCI DCEG Cancer Genomics Research Laboratory, NCI DCEG Cancer Sequencing Working Group, Caporaso N, Greene MH, Goldin LR, Stewart DR. Hum. Genet. 134 775-787 (2015)
  59. The loop-less tmCdc34 E2 mutant defective in polyubiquitination in vitro and in vivo supports yeast growth in a manner dependent on Ubp14 and Cka2. Lass A, Cocklin R, Scaglione KM, Skowyra M, Korolev S, Goebl M, Skowyra D. Cell Div 6 7 (2011)
  60. Dynamic control of selectivity in the ubiquitination pathway revealed by an ASP to GLU substitution in an intra-molecular salt-bridge network. van Wijk SJ, Melquiond AS, de Vries SJ, Timmers HT, Bonvin AM. PLoS Comput. Biol. 8 e1002754 (2012)
  61. Structural Mimicry by a Bacterial F Box Effector Hijacks the Host Ubiquitin-Proteasome System. Wong K, Perpich JD, Kozlov G, Cygler M, Abu Kwaik Y, Gehring K. Structure 25 376-383 (2017)
  62. The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3. Kumanomidou T, Nishio K, Takagi K, Nakagawa T, Suzuki A, Yamane T, Tokunaga F, Iwai K, Murakami A, Yoshida Y, Tanaka K, Mizushima T. PLoS ONE 10 e0140366 (2015)
  63. Development of a fluorescence polarization based high-throughput assay to identify Casitas B-lineage lymphoma RING domain regulators. Xie X, Sun L, Pessetto ZY, Zhao Y, Zang Z, Zhong L, Wu M, Su Q, Gao X, Zan W, Sun Y. PLoS ONE 8 e78042 (2013)
  64. Recognition of the CCT5 di-Glu degron by CRL4DCAF12 is dependent on TRiC assembly. Pla-Prats C, Cavadini S, Kempf G, Thomä NH. EMBO J 42 e112253 (2023)
  65. Solution structure of the zinc finger domain of human RNF144A ubiquitin ligase. Miyamoto K, Migita K, Saito K. Protein Sci 29 1836-1842 (2020)
  66. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)
  67. MUL1-RING recruits the substrate, p53-TAD as a complex with UBE2D2-UB conjugate. Lee MS, Lee SO, Choi J, Ryu M, Lee MK, Kim JH, Hwang E, Lee CK, Chi SW, Ryu KS. FEBS J 289 3568-3586 (2022)
  68. Mining cancer genomes for change-of-metabolic-function mutations. Tu KJ, Diplas BH, Regal JA, Waitkus MS, Pirozzi CJ, Reitman ZJ. Commun Biol 6 1143 (2023)
  69. Noonan Syndrome in South Africa: Clinical and Molecular Profiles. Tekendo-Ngongang C, Agenbag G, Bope CD, Esterhuizen AI, Wonkam A. Front Genet 10 333 (2019)
  70. Unique RING finger structure from the human HRD1 protein. Miyamoto K, Taguchi Y, Saito K. Protein Sci. 28 448-453 (2019)


Reviews citing this publication (108)

  1. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Glickman MH, Ciechanover A. Physiol. Rev. 82 373-428 (2002)
  2. Mechanisms underlying ubiquitination. Pickart CM. Annu. Rev. Biochem. 70 503-533 (2001)
  3. RING domain E3 ubiquitin ligases. Deshaies RJ, Joazeiro CA. Annu. Rev. Biochem. 78 399-434 (2009)
  4. Themes and variations on ubiquitylation. Weissman AM. Nat. Rev. Mol. Cell Biol. 2 169-178 (2001)
  5. RING finger proteins: mediators of ubiquitin ligase activity. Joazeiro CA, Weissman AM. Cell 102 549-552 (2000)
  6. The SCF ubiquitin ligase: insights into a molecular machine. Cardozo T, Pagano M. Nat. Rev. Mol. Cell Biol. 5 739-751 (2004)
  7. The ubiquitin 26S proteasome proteolytic pathway. Smalle J, Vierstra RD. Annu Rev Plant Biol 55 555-590 (2004)
  8. Ubiquitin: structures, functions, mechanisms. Pickart CM, Eddins MJ. Biochim. Biophys. Acta 1695 55-72 (2004)
  9. Back to the future with ubiquitin. Pickart CM. Cell 116 181-190 (2004)
  10. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD. Trends Cell Biol. 10 429-439 (2000)
  11. Cbl: many adaptations to regulate protein tyrosine kinases. Thien CB, Langdon WY. Nat. Rev. Mol. Cell Biol. 2 294-307 (2001)
  12. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Meroni G, Diez-Roux G. Bioessays 27 1147-1157 (2005)
  13. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Willems AR, Schwab M, Tyers M. Biochim. Biophys. Acta 1695 133-170 (2004)
  14. The ubiquitin-proteasome pathway and its role in cancer. Mani A, Gelmann EP. J. Clin. Oncol. 23 4776-4789 (2005)
  15. The interplay between Src family kinases and receptor tyrosine kinases. Bromann PA, Korkaya H, Courtneidge SA. Oncogene 23 7957-7968 (2004)
  16. Ubiquitin, hormones and biotic stress in plants. Dreher K, Callis J. Ann. Bot. 99 787-822 (2007)
  17. HECT and RING finger families of E3 ubiquitin ligases at a glance. Metzger MB, Hristova VA, Weissman AM. J. Cell. Sci. 125 531-537 (2012)
  18. The PHD finger, a nuclear protein-interaction domain. Bienz M. Trends Biochem. Sci. 31 35-40 (2006)
  19. The ubiquitin-proteasome pathway and proteasome inhibitors. Myung J, Kim KB, Crews CM. Med Res Rev 21 245-273 (2001)
  20. New insights into ubiquitin E3 ligase mechanism. Berndsen CE, Wolberger C. Nat. Struct. Mol. Biol. 21 301-307 (2014)
  21. The Cbl family proteins: ring leaders in regulation of cell signaling. Swaminathan G, Tsygankov AY. J. Cell. Physiol. 209 21-43 (2006)
  22. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. van Wijk SJ, Timmers HT. FASEB J. 24 981-993 (2010)
  23. Ubiquitin ligases and the immune response. Liu YC. Annu. Rev. Immunol. 22 81-127 (2004)
  24. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Metzger MB, Pruneda JN, Klevit RE, Weissman AM. Biochim. Biophys. Acta 1843 47-60 (2014)
  25. Regulation of apoptosis: the ubiquitous way. Yang Y, Yu X. FASEB J. 17 790-799 (2003)
  26. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Finley D, Ulrich HD, Sommer T, Kaiser P. Genetics 192 319-360 (2012)
  27. Getting into position: the catalytic mechanisms of protein ubiquitylation. Passmore LA, Barford D. Biochem. J. 379 513-525 (2004)
  28. Role of ubiquitylation in cellular membrane transport. Staub O, Rotin D. Physiol. Rev. 86 669-707 (2006)
  29. c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Thien CB, Langdon WY. Biochem. J. 391 153-166 (2005)
  30. E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. d'Azzo A, Bongiovanni A, Nastasi T. Traffic 6 429-441 (2005)
  31. Signal transduction via the growth hormone receptor. Zhu T, Goh EL, Graichen R, Ling L, Lobie PE. Cell. Signal. 13 599-616 (2001)
  32. Structural assembly of cullin-RING ubiquitin ligase complexes. Zimmerman ES, Schulman BA, Zheng N. Curr. Opin. Struct. Biol. 20 714-721 (2010)
  33. Structural regulation of cullin-RING ubiquitin ligase complexes. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA. Curr. Opin. Struct. Biol. 21 257-264 (2011)
  34. The SCF ubiquitin ligase: an extended look. Jackson PK, Eldridge AG. Mol. Cell 9 923-925 (2002)
  35. Beyond the RING: CBL proteins as multivalent adapters. Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Oncogene 20 6382-6402 (2001)
  36. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GE, Natarajan A, Raja SM, Naramura M, Band V, Band H. Biochim. Biophys. Acta 1833 122-139 (2013)
  37. Regulation of the G1 to S transition by the ubiquitin pathway. DeSalle LM, Pagano M. FEBS Lett. 490 179-189 (2001)
  38. Positive and negative regulation of T-cell activation by adaptor proteins. Koretzky GA, Myung PS. Nat. Rev. Immunol. 1 95-107 (2001)
  39. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Fang S, Lorick KL, Jensen JP, Weissman AM. Semin. Cancer Biol. 13 5-14 (2003)
  40. Degradation of activated protein kinases by ubiquitination. Lu Z, Hunter T. Annu. Rev. Biochem. 78 435-475 (2009)
  41. Regulation of catalytic activities of HECT ubiquitin ligases. Kee Y, Huibregtse JM. Biochem. Biophys. Res. Commun. 354 329-333 (2007)
  42. Therapeutic strategies within the ubiquitin proteasome system. Eldridge AG, O'Brien T. Cell Death Differ. 17 4-13 (2010)
  43. Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Ryan PE, Davies GC, Nau MM, Lipkowitz S. Trends Biochem. Sci. 31 79-88 (2006)
  44. Ubiquitin Ligases: Structure, Function, and Regulation. Zheng N, Shabek N. Annu. Rev. Biochem. 86 129-157 (2017)
  45. Analyzing protein interaction networks using structural information. Kiel C, Beltrao P, Serrano L. Annu. Rev. Biochem. 77 415-441 (2008)
  46. Structural and functional insights to ubiquitin-like protein conjugation. Streich FC, Lima CD. Annu Rev Biophys 43 357-379 (2014)
  47. Structure, function and mechanism of the anaphase promoting complex (APC/C). Barford D. Q. Rev. Biophys. 44 153-190 (2011)
  48. Ubiquitin and breast cancer. Ohta T, Fukuda M. Oncogene 23 2079-2088 (2004)
  49. Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Früh K, Bartee E, Gouveia K, Mansouri M. Virus Res. 88 55-69 (2002)
  50. Spotlight on the role of COP1 in tumorigenesis. Marine JC. Nat. Rev. Cancer 12 455-464 (2012)
  51. Ubiquitin-mediated regulation of TNFR1 signaling. Wertz IE, Dixit VM. Cytokine Growth Factor Rev. 19 313-324 (2008)
  52. E2 enzymes: more than just middle men. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. Cell Res. 26 423-440 (2016)
  53. Ubiquitin-dependent proteolysis: its role in human diseases and the design of therapeutic strategies. Sakamoto KM. Mol. Genet. Metab. 77 44-56 (2002)
  54. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Cappadocia L, Lima CD. Chem. Rev. 118 889-918 (2018)
  55. Ubiquitin-like protein activation. Huang DT, Walden H, Duda D, Schulman BA. Oncogene 23 1958-1971 (2004)
  56. Dedicated to the core: understanding the Fanconi anemia complex. Gurtan AM, D'Andrea AD. DNA Repair (Amst.) 5 1119-1125 (2006)
  57. Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Pray TR, Parlati F, Huang J, Wong BR, Payan DG, Bennett MK, Issakani SD, Molineaux S, Demo SD. Drug Resist. Updat. 5 249-258 (2002)
  58. Molecular controls of antigen receptor clustering and autoimmunity. Krawczyk C, Penninger JM. Trends Cell Biol. 11 212-220 (2001)
  59. The roles of the RAG1 and RAG2 "non-core" regions in V(D)J recombination and lymphocyte development. Jones JM, Simkus C. Arch. Immunol. Ther. Exp. (Warsz.) 57 105-116 (2009)
  60. Localization and modulation of ErbB receptor tyrosine kinases. Carraway KL, Sweeney C. Curr. Opin. Cell Biol. 13 125-130 (2001)
  61. Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. De P, Rodgers KK. Immunol. Rev. 200 70-82 (2004)
  62. Ubiquitination of substrates by esterification. Wang X, Herr RA, Hansen TH. Traffic 13 19-24 (2012)
  63. Drug discovery in the ubiquitin regulatory pathway. Wong BR, Parlati F, Qu K, Demo S, Pray T, Huang J, Payan DG, Bennett MK. Drug Discov. Today 8 746-754 (2003)
  64. Parkin's substrates and the pathways leading to neuronal damage. Cookson MR. Neuromolecular Med. 3 1-13 (2003)
  65. The Cbl family: ubiquitin ligases regulating signaling by tyrosine kinases. Sanjay A, Horne WC, Baron R. Sci. STKE 2001 pe40 (2001)
  66. A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of multienzyme complexes through allostery. Nussinov R, Ma B, Tsai CJ. Biochim. Biophys. Acta 1834 820-829 (2013)
  67. Dynamic interactions of proteins in complex networks: identifying the complete set of interacting E2s for functional investigation of E3-dependent protein ubiquitination. Christensen DE, Klevit RE. FEBS J. 276 5381-5389 (2009)
  68. The ubiquitin-proteasome pathway is a new partner for the control of insulin signaling. Rome S, Meugnier E, Vidal H. Curr Opin Clin Nutr Metab Care 7 249-254 (2004)
  69. Cellular strategies for making monoubiquitin signals. Ramanathan HN, Ye Y. Crit. Rev. Biochem. Mol. Biol. 47 17-28 (2012)
  70. Endoplasmic reticulum stress and Parkinson's disease: the role of HRD1 in averting apoptosis in neurodegenerative disease. Omura T, Kaneko M, Okuma Y, Matsubara K, Nomura Y. Oxid Med Cell Longev 2013 239854 (2013)
  71. Twists and turns in ubiquitin-like protein conjugation cascades. Schulman BA. Protein Sci. 20 1941-1954 (2011)
  72. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Liu Q, Zhou H, Langdon WY, Zhang J. Cell Cycle 13 1875-1884 (2014)
  73. The MDM2 gene family. Mendoza M, Mandani G, Momand J. Biomol Concepts 5 9-19 (2014)
  74. Protein interactions in the sumoylation cascade: lessons from X-ray structures. Tang Z, Hecker CM, Scheschonka A, Betz H. FEBS J. 275 3003-3015 (2008)
  75. Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Polge C, Attaix D, Taillandier D. Front Physiol 6 59 (2015)
  76. Specificity and disease in the ubiquitin system. Chaugule VK, Walden H. Biochem. Soc. Trans. 44 212-227 (2016)
  77. The Photomorphogenic Central Repressor COP1: Conservation and Functional Diversification during Evolution. Han X, Huang X, Deng XW. Plant Commun 1 100044 (2020)
  78. Targeting the Ubiquitin System in Glioblastoma. Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Front Oncol 10 574011 (2020)
  79. RING-Between-RING E3 Ligases: Emerging Themes amid the Variations. Dove KK, Klevit RE. J. Mol. Biol. 429 3363-3375 (2017)
  80. Ubiquitin-mediated proteasomal degradation in normal and malignant hematopoiesis. Heuzé ML, Lamsoul I, Moog-Lutz C, Lutz PG. Blood Cells Mol. Dis. 40 200-210 (2008)
  81. Gain-of-function c-CBL mutations associated with uniparental disomy of 11q in myeloid neoplasms. Ogawa S, Sanada M, Shih LY, Suzuki T, Otsu M, Nakauchi H, Koeffler HP. Cell Cycle 9 1051-1056 (2010)
  82. Releasing the brake: targeting Cbl-b to enhance lymphocyte effector functions. Wallner S, Gruber T, Baier G, Wolf D. Clin. Dev. Immunol. 2012 692639 (2012)
  83. Role of the ubiquitin proteasome system in hematologic malignancies. Sahasrabuddhe AA, Elenitoba-Johnson KS. Immunol. Rev. 263 224-239 (2015)
  84. Structure and putative function of NFX1-like proteins in plants. Müssig C, Schröder F, Usadel B, Lisso J. Plant Biol (Stuttg) 12 381-394 (2010)
  85. Protein ubiquitination: CHIPping away the symmetry. Schulman BA, Chen ZJ. Mol. Cell 20 653-655 (2005)
  86. Molecular functions of genes related to grain shape in rice. Zheng J, Zhang Y, Wang C. Breed. Sci. 65 120-126 (2015)
  87. Cbl family proteins: balancing FcεRI-mediated mast cell and basophil activation. Gasparrini F, Molfetta R, Santoni A, Paolini R. Int. Arch. Allergy Immunol. 156 16-26 (2011)
  88. Regulation of cancer stem cells by RING finger ubiquitin ligases. Kang B, Sun XH. Stem Cell Investig 1 5 (2014)
  89. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. Lee H, Tsygankov AY. J. Cell. Physiol. 228 2285-2293 (2013)
  90. Fanconi anemia and ubiquitination. Zhang Y, Zhou X, Huang P. J Genet Genomics 34 573-580 (2007)
  91. Anticancer drug discovery by targeting cullin neddylation. Yu Q, Jiang Y, Sun Y. Acta Pharm Sin B 10 746-765 (2020)
  92. E1 on the move. VanDemark AP, Hill CP. Mol. Cell 17 474-475 (2005)
  93. E3 ubiquitin ligase Casitas B lineage lymphoma-b and its potential therapeutic implications for immunotherapy. Jafari D, Mousavi MJ, Keshavarz Shahbaz S, Jafarzadeh L, Tahmasebi S, Spoor J, Esmaeilzadeh A. Clin Exp Immunol 204 14-31 (2021)
  94. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Kang JA, Jeon YJ. Int J Mol Sci 22 2078 (2021)
  95. The enzymes in ubiquitin-like post-translational modifications. Chen Y. Biosci Trends 1 16-25 (2007)
  96. Ubiquitylation as a Rheostat for TCR Signaling: From Targeted Approaches Toward Global Profiling. O'Leary CE, Lewis EL, Oliver PM. Front Immunol 6 618 (2015)
  97. Using protein motion to read, write, and erase ubiquitin signals. Phillips AH, Corn JE. J. Biol. Chem. 290 26437-26444 (2015)
  98. Concise machinery for monitoring ubiquitination activities using novel artificial RING fingers. Miyamoto K, Saito K. Protein Sci. 27 1354-1363 (2018)
  99. How to Inactivate Human Ubiquitin E3 Ligases by Mutation. Garcia-Barcena C, Osinalde N, Ramirez J, Mayor U. Front Cell Dev Biol 8 39 (2020)
  100. Plant deubiquitinases: from structure and activity to biological functions. Luo R, Yang K, Xiao W. Plant Cell Rep 42 469-486 (2023)
  101. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review. Yang GF, Zhang X, Su YG, Zhao R, Wang YY. Cancer Cell Int 21 455 (2021)
  102. E3 ubiquitin ligase on the biological properties of hematopoietic stem cell. Zhan Q, Wang J, Zhang H, Zhang L. J Mol Med (Berl) 101 543-556 (2023)
  103. E3 ubiquitin ligases in the acute leukemic signaling pathways. Zhan Q, Zhang H, Wu B, Zhang N, Zhang L. Front Physiol 13 1004330 (2022)
  104. Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Fiñana C, Gómez-Molina N, Alonso-Moreno S, Belver L. Cancers (Basel) 14 1335 (2022)
  105. Huntingtin Ubiquitination Mechanisms and Novel Possible Therapies to Decrease the Toxic Effects of Mutated Huntingtin. Fiorillo A, Morea V, Colotti G, Ilari A. J Pers Med 11 1309 (2021)
  106. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Front Immunol 13 793610 (2022)
  107. Structural Diversity of Ubiquitin E3 Ligase. Toma-Fukai S, Shimizu T. Molecules 26 6682 (2021)
  108. Zooming into the structure-function of RING finger proteins for anti-cancer therapeutic applications. George M, Masamba P, Iwalokun BA, Kappo AP. Am J Cancer Res 13 2773-2789 (2023)

Articles citing this publication (388)

  1. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP. Nature 416 703-709 (2002)
  2. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, Yu D, Domaschenz H, Whittle B, Lambe T, Roberts IS, Copley RR, Bell JI, Cornall RJ, Goodnow CC. Nature 435 452-458 (2005)
  3. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. Cell 134 995-1006 (2008)
  4. Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP. Mol. Cell 11 1445-1456 (2003)
  5. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. Cell 108 345-356 (2002)
  6. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Orlicky S, Tang X, Willems A, Tyers M, Sicheri F. Cell 112 243-256 (2003)
  7. Sequence and structural analysis of BTB domain proteins. Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Privé GG. Genome Biol. 6 R82 (2005)
  8. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Cell 133 653-665 (2008)
  9. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J. Plant Physiol. 137 13-30 (2005)
  10. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Swanson R, Locher M, Hochstrasser M. Genes Dev. 15 2660-2674 (2001)
  11. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, Oda H, Yamagata T, Takita J, Gotoh N, Nakazaki K, Kawamata N, Onodera M, Nobuyoshi M, Hayashi Y, Harada H, Kurokawa M, Chiba S, Mori H, Ozawa K, Omine M, Hirai H, Nakauchi H, Koeffler HP, Ogawa S. Nature 460 904-908 (2009)
  12. Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. Boutell C, Sadis S, Everett RD. J. Virol. 76 841-850 (2002)
  13. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Fang S, Ferrone M, Yang C, Jensen JP, Tiwari S, Weissman AM. Proc. Natl. Acad. Sci. U.S.A. 98 14422-14427 (2001)
  14. Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma TK. EMBO J. 25 2465-2474 (2006)
  15. Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C, Pearl LH. Mol. Cell 20 525-538 (2005)
  16. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. Nature 474 105-108 (2011)
  17. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Kotaja N, Karvonen U, Jänne OA, Palvimo JJ. Mol. Cell. Biol. 22 5222-5234 (2002)
  18. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Naramura M, Jang IK, Kole H, Huang F, Haines D, Gu H. Nat. Immunol. 3 1192-1199 (2002)
  19. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D, Fukuda M, Ohta T, Klevit R. Proc. Natl. Acad. Sci. U.S.A. 100 5646-5651 (2003)
  20. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H, Sekeres MA, Wang XF, McDevitt MA, Maciejewski JP. Cancer Res. 68 10349-10357 (2008)
  21. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Christensen DE, Brzovic PS, Klevit RE. Nat. Struct. Mol. Biol. 14 941-948 (2007)
  22. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Jeon MS, Atfield A, Venuprasad K, Krawczyk C, Sarao R, Elly C, Yang C, Arya S, Bachmaier K, Su L, Bouchard D, Jones R, Gronski M, Ohashi P, Wada T, Bloom D, Fathman CG, Liu YC, Penninger JM. Immunity 21 167-177 (2004)
  23. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, Park M. Mol. Cell 8 995-1004 (2001)
  24. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K. Science 340 1451-1455 (2013)
  25. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, Chung J. Biochem. Biophys. Res. Commun. 377 975-980 (2008)
  26. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J. Plant Cell 18 3415-3428 (2006)
  27. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C. Cell 105 711-720 (2001)
  28. Cullin-RING ubiquitin ligases: global regulation and activation cycles. Bosu DR, Kipreos ET. Cell Div 3 7 (2008)
  29. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Fang D, Liu YC. Nat. Immunol. 2 870-875 (2001)
  30. E2 interaction and dimerization in the crystal structure of TRAF6. Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, Hura G, Zheng L, Rich RL, Campos AD, Myszka DG, Lenardo MJ, Darnay BG, Wu H. Nat. Struct. Mol. Biol. 16 658-666 (2009)
  31. Structure and functional interactions of the Tsg101 UEV domain. Pornillos O, Alam SL, Rich RL, Myszka DG, Davis DR, Sundquist WI. EMBO J. 21 2397-2406 (2002)
  32. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. Nat. Struct. Mol. Biol. 19 876-883 (2012)
  33. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL. Cell Death Differ. 15 841-848 (2008)
  34. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Dye BT, Schulman BA. Annu Rev Biophys Biomol Struct 36 131-150 (2007)
  35. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, Mullighan CG, Chen L, Bergstraesser E, Bueso-Ramos CE, Emanuel PD, Hasle H, Issa JP, van den Heuvel-Eibrink MM, Locatelli F, Stary J, Trebo M, Wlodarski M, Zecca M, Shannon KM, Niemeyer CM. Blood 114 1859-1863 (2009)
  36. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY, Guy GR. EMBO J. 21 4796-4808 (2002)
  37. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. Stroupe C, Collins KM, Fratti RA, Wickner W. EMBO J. 25 1579-1589 (2006)
  38. MHC class I ubiquitination by a viral PHD/LAP finger protein. Boname JM, Stevenson PG. Immunity 15 627-636 (2001)
  39. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Tang X, Orlicky S, Lin Z, Willems A, Neculai D, Ceccarelli D, Mercurio F, Shilton BH, Sicheri F, Tyers M. Cell 129 1165-1176 (2007)
  40. Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. Hewitt EW, Duncan L, Mufti D, Baker J, Stevenson PG, Lehner PJ. EMBO J. 21 2418-2429 (2002)
  41. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Kubori T, Hyakutake A, Nagai H. Mol. Microbiol. 67 1307-1319 (2008)
  42. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, Bonifacino JS, Hurley JH. Nat. Struct. Mol. Biol. 13 264-271 (2006)
  43. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N, Prives C. EMBO J. 26 90-101 (2007)
  44. Ubc9 sumoylation regulates SUMO target discrimination. Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A. Mol. Cell 31 371-382 (2008)
  45. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Unk I, Hajdú I, Fátyol K, Szakál B, Blastyák A, Bermudez V, Hurwitz J, Prakash L, Prakash S, Haracska L. Proc. Natl. Acad. Sci. U.S.A. 103 18107-18112 (2006)
  46. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. Albert TK, Hanzawa H, Legtenberg YI, de Ruwe MJ, van den Heuvel FA, Collart MA, Boelens R, Timmers HT. EMBO J. 21 355-364 (2002)
  47. Insights into Lafora disease: malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin. Gentry MS, Worby CA, Dixon JE. Proc. Natl. Acad. Sci. U.S.A. 102 8501-8506 (2005)
  48. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. González-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JD. Plant Cell 18 1067-1083 (2006)
  49. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Yunus AA, Lima CD. Nat. Struct. Mol. Biol. 13 491-499 (2006)
  50. RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Thien CB, Walker F, Langdon WY. Mol. Cell 7 355-365 (2001)
  51. Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Ozkan E, Yu H, Deisenhofer J. Proc. Natl. Acad. Sci. U.S.A. 102 18890-18895 (2005)
  52. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Hamilton KS, Ellison MJ, Barber KR, Williams RS, Huzil JT, McKenna S, Ptak C, Glover M, Shaw GS. Structure 9 897-904 (2001)
  53. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF, Schulman BA. Mol. Cell 33 483-495 (2009)
  54. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. Xia Y, Pao GM, Chen HW, Verma IM, Hunter T. J. Biol. Chem. 278 5255-5263 (2003)
  55. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. Kang D, Chen J, Wong J, Fang G. J. Cell Biol. 156 249-259 (2002)
  56. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, Caputo V, Silvano M, Buscherini F, Consoli F, Ferrara G, Digilio MC, Cavaliere ML, van Hagen JM, Zampino G, van der Burgt I, Ferrero GB, Mazzanti L, Screpanti I, Yntema HG, Nillesen WM, Savarirayan R, Zenker M, Dallapiccola B, Gelb BD, Tartaglia M. Am. J. Hum. Genet. 87 250-257 (2010)
  57. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Huang DT, Paydar A, Zhuang M, Waddell MB, Holton JM, Schulman BA. Mol. Cell 17 341-350 (2005)
  58. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Wolberger C, Pickart CM. EMBO J. 22 5241-5250 (2003)
  59. Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ. Cell 139 957-968 (2009)
  60. APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Tang Z, Li B, Bharadwaj R, Zhu H, Ozkan E, Hakala K, Deisenhofer J, Yu H. Mol. Biol. Cell 12 3839-3851 (2001)
  61. Cutting edge: regulation of T cell activation threshold by CD28 costimulation through targeting Cbl-b for ubiquitination. Zhang J, Bárdos T, Li D, Gál I, Vermes C, Xu J, Mikecz K, Finnegan A, Lipkowitz S, Glant TT. J Immunol 169 2236-2240 (2002)
  62. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Eletr ZM, Huang DT, Duda DM, Schulman BA, Kuhlman B. Nat. Struct. Mol. Biol. 12 933-934 (2005)
  63. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Das R, Mariano J, Tsai YC, Kalathur RC, Kostova Z, Li J, Tarasov SG, McFeeters RL, Altieri AS, Ji X, Byrd RA, Weissman AM. Mol. Cell 34 674-685 (2009)
  64. The U-box protein family in plants. Azevedo C, Santos-Rosa MJ, Shirasu K. Trends Plant Sci. 6 354-358 (2001)
  65. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ, Marburger TB, Wen J, Perrotti D, Bloomfield CD, Whitman SP. Blood 110 1022-1024 (2007)
  66. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK. EMBO J. 31 3833-3844 (2012)
  67. Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Platta HW, El Magraoui F, Bäumer BE, Schlee D, Girzalsky W, Erdmann R. Mol. Cell. Biol. 29 5505-5516 (2009)
  68. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V, Neculai D, Chou YC, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J, Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A, Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M, Sicheri F. Cell 145 1075-1087 (2011)
  69. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Zhu Y, Li H, Hu L, Wang J, Zhou Y, Pang Z, Liu L, Shao F. Nat. Struct. Mol. Biol. 15 1302-1308 (2008)
  70. FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Wong A, Lamothe B, Lee A, Schlessinger J, Lax I. Proc. Natl. Acad. Sci. U.S.A. 99 6684-6689 (2002)
  71. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Schebesta M, Pfeffer PL, Busslinger M. Immunity 17 473-485 (2002)
  72. Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Qiu XB, Goldberg AL. Proc. Natl. Acad. Sci. U.S.A. 99 14843-14848 (2002)
  73. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C. Cell. Microbiol. 12 1272-1291 (2010)
  74. E3-independent monoubiquitination of ubiquitin-binding proteins. Hoeller D, Hecker CM, Wagner S, Rogov V, Dötsch V, Dikic I. Mol. Cell 26 891-898 (2007)
  75. The non-receptor tyrosine kinase Syk is a target of Cbl-mediated ubiquitylation upon B-cell receptor stimulation. Rao N, Ghosh AK, Ota S, Zhou P, Reddi AL, Hakezi K, Druker BK, Wu J, Band H. EMBO J. 20 7085-7095 (2001)
  76. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT. Nat. Struct. Mol. Biol. 12 67-74 (2005)
  77. The Sjogren's syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. Espinosa A, Zhou W, Ek M, Hedlund M, Brauner S, Popovic K, Horvath L, Wallerskog T, Oukka M, Nyberg F, Kuchroo VK, Wahren-Herlenius M. J Immunol 176 6277-6285 (2006)
  78. Defining the molecular basis of Arf and Hdm2 interactions. Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RW. J. Mol. Biol. 314 263-277 (2001)
  79. Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis. Wing JP, Schreader BA, Yokokura T, Wang Y, Andrews PS, Huseinovic N, Dong CK, Ogdahl JL, Schwartz LM, White K, Nambu JR. Nat. Cell Biol. 4 451-456 (2002)
  80. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Dominguez C, Bonvin AM, Winkler GS, van Schaik FM, Timmers HT, Boelens R. Structure 12 633-644 (2004)
  81. Inferring protein domain interactions from databases of interacting proteins. Riley R, Lee C, Sabatti C, Eisenberg D. Genome Biol. 6 R89 (2005)
  82. The tumor suppressor activity of SOCS-1. Rottapel R, Ilangumaran S, Neale C, La Rose J, Ho JM, Nguyen MH, Barber D, Dubreuil P, de Sepulveda P. Oncogene 21 4351-4362 (2002)
  83. A binding motif for Siah ubiquitin ligase. House CM, Frew IJ, Huang HL, Wiche G, Traficante N, Nice E, Catimel B, Bowtell DD. Proc. Natl. Acad. Sci. U.S.A. 100 3101-3106 (2003)
  84. High-frequency persistence of an impaired allele of the retroviral defense gene TRIM5alpha in humans. Sawyer SL, Wu LI, Akey JM, Emerman M, Malik HS. Curr. Biol. 16 95-100 (2006)
  85. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, Kochupurakkal BS, Katz M, Lavi S, Cesareni G, Yarden Y. J. Biol. Chem. 281 21640-21651 (2006)
  86. A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. van Wijk SJ, de Vries SJ, Kemmeren P, Huang A, Boelens R, Bonvin AM, Timmers HT. Mol. Syst. Biol. 5 295 (2009)
  87. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF, Schulman BA. Nat. Struct. Mol. Biol. 11 927-935 (2004)
  88. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Takahashi Y, Toh-e A, Kikuchi Y. Gene 275 223-231 (2001)
  89. Alterations in the solubility and intracellular localization of parkin by several familial Parkinson's disease-linked point mutations. Wang C, Tan JM, Ho MW, Zaiden N, Wong SH, Chew CL, Eng PW, Lim TM, Dawson TM, Lim KL. J. Neurochem. 93 422-431 (2005)
  90. Growth factor receptor binding protein 2-mediated recruitment of the RING domain of Cbl to the epidermal growth factor receptor is essential and sufficient to support receptor endocytosis. Huang F, Sorkin A. Mol. Biol. Cell 16 1268-1281 (2005)
  91. Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE. J. Mol. Biol. 363 433-450 (2006)
  92. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Summers MK, Pan B, Mukhyala K, Jackson PK. Mol. Cell 31 544-556 (2008)
  93. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. Wang M, Pickart CM. EMBO J. 24 4324-4333 (2005)
  94. Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T. Mol. Cell. Biol. 29 4798-4811 (2009)
  95. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, Barber KR, Aguirre JD, Burchell L, Purkiss A, Walden H, Shaw GS. Nat Commun 4 1983 (2013)
  96. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM, Deshaies RJ. Mol. Cell Proteomics 2 1350-1358 (2003)
  97. Structural basis for SH3 domain-mediated high-affinity binding between Mona/Gads and SLP-76. Harkiolaki M, Lewitzky M, Gilbert RJ, Jones EY, Bourette RP, Mouchiroud G, Sondermann H, Moarefi I, Feller SM. EMBO J. 22 2571-2582 (2003)
  98. Structural basis for a reciprocal regulation between SCF and CSN. Enchev RI, Scott DC, da Fonseca PC, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP. Cell Rep 2 616-627 (2012)
  99. Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability. Morimoto M, Nishida T, Nagayama Y, Yasuda H. Biochem. Biophys. Res. Commun. 301 392-398 (2003)
  100. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. Tan YH, Krishnaswamy S, Nandi S, Kanteti R, Vora S, Onel K, Hasina R, Lo FY, El-Hashani E, Cervantes G, Robinson M, Hsu HS, Kales SC, Lipkowitz S, Karrison T, Sattler M, Vokes EE, Wang YC, Salgia R. PLoS ONE 5 e8972 (2010)
  101. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM. J. Biol. Chem. 277 24967-24975 (2002)
  102. Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C. Dube P, Herzog F, Gieffers C, Sander B, Riedel D, Müller SA, Engel A, Peters JM, Stark H. Mol. Cell 20 867-879 (2005)
  103. Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Gangavarapu V, Haracska L, Unk I, Johnson RE, Prakash S, Prakash L. Mol. Cell. Biol. 26 7783-7790 (2006)
  104. A dual E3 mechanism for Rub1 ligation to Cdc53. Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW, Kurz T, Schulman BA. Mol. Cell 39 784-796 (2010)
  105. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Gardner RG, Shearer AG, Hampton RY. Mol. Cell. Biol. 21 4276-4291 (2001)
  106. RLE-1, an E3 ubiquitin ligase, regulates C. elegans aging by catalyzing DAF-16 polyubiquitination. Li W, Gao B, Lee SM, Bennett K, Fang D. Dev. Cell 12 235-246 (2007)
  107. Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility. Morris JR, Pangon L, Boutell C, Katagiri T, Keep NH, Solomon E. Hum. Mol. Genet. 15 599-606 (2006)
  108. The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Bothos J, Summers MK, Venere M, Scolnick DM, Halazonetis TD. Oncogene 22 7101-7107 (2003)
  109. MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. Badciong JC, Haas AL. J. Biol. Chem. 277 49668-49675 (2002)
  110. Mechanism of p53 stabilization by ATM after DNA damage. Cheng Q, Chen J. Cell Cycle 9 472-478 (2010)
  111. Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. Bentley ML, Corn JE, Dong KC, Phung Q, Cheung TK, Cochran AG. EMBO J. 30 3285-3297 (2011)
  112. The ATL gene family from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. Serrano M, Parra S, Alcaraz LD, Guzmán P. J. Mol. Evol. 62 434-445 (2006)
  113. Control of biochemical reactions through supramolecular RING domain self-assembly. Kentsis A, Gordon RE, Borden KL. Proc. Natl. Acad. Sci. U.S.A. 99 15404-15409 (2002)
  114. Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Sakata E, Yamaguchi Y, Miyauchi Y, Iwai K, Chiba T, Saeki Y, Matsuda N, Tanaka K, Kato K. Nat. Struct. Mol. Biol. 14 167-168 (2007)
  115. N-Terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Ito K, Adachi S, Iwakami R, Yasuda H, Muto Y, Seki N, Okano Y. Eur. J. Biochem. 268 2725-2732 (2001)
  116. Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. Feltham R, Bettjeman B, Budhidarmo R, Mace PD, Shirley S, Condon SM, Chunduru SK, McKinlay MA, Vaux DL, Silke J, Day CL. J. Biol. Chem. 286 17015-17028 (2011)
  117. TACI is required for efficient plasma cell differentiation in response to T-independent type 2 antigens. Mantchev GT, Cortesão CS, Rebrovich M, Cascalho M, Bram RJ. J Immunol 179 2282-2288 (2007)
  118. Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. Umebayashi K, Stenmark H, Yoshimori T. Mol. Biol. Cell 19 3454-3462 (2008)
  119. Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates. Sakata E, Satoh T, Yamamoto S, Yamaguchi Y, Yagi-Utsumi M, Kurimoto E, Tanaka K, Wakatsuki S, Kato K. Structure 18 138-147 (2010)
  120. Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Greve K, La Cour T, Jensen MK, Poulsen FM, Skriver K. Biochem. J. 371 97-108 (2003)
  121. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE, Xu W. Nature 517 223-226 (2015)
  122. Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Lehmann C, Begley TP, Ealick SE. Biochemistry 45 11-19 (2006)
  123. Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. Furukawa M, Ohta T, Xiong Y. J. Biol. Chem. 277 15758-15765 (2002)
  124. Release of ubiquitin-charged Cdc34-S - Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Deffenbaugh AE, Scaglione KM, Zhang L, Moore JM, Buranda T, Sklar LA, Skowyra D. Cell 114 611-622 (2003)
  125. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Vander Kooi CW, Ohi MD, Rosenberg JA, Oldham ML, Newcomer ME, Gould KL, Chazin WJ. Biochemistry 45 121-130 (2006)
  126. Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Errington WJ, Khan MQ, Bueler SA, Rubinstein JL, Chakrabartty A, Privé GG. Structure 20 1141-1153 (2012)
  127. Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. Nat. Struct. Mol. Biol. 20 982-986 (2013)
  128. Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro. Kus BM, Caldon CE, Andorn-Broza R, Edwards AM. Proteins 54 455-467 (2004)
  129. Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Rathinam C, Thien CB, Flavell RA, Langdon WY. Cancer Cell 18 341-352 (2010)
  130. Pygopus residues required for its binding to Legless are critical for transcription and development. Townsley FM, Thompson B, Bienz M. J Biol Chem 279 5177-5183 (2004)
  131. SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation. Kim AY, Bommeljé CC, Lee BE, Yonekawa Y, Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, Ramanathan Y, Singh B. J. Biol. Chem. 283 33211-33220 (2008)
  132. The carboxyl segment of the mumps virus V protein associates with Stat proteins in vitro via a tryptophan-rich motif. Nishio M, Garcin D, Simonet V, Kolakofsky D. Virology 300 92-99 (2002)
  133. The contribution of the acidic domain of MDM2 to p53 and MDM2 stability. Argentini M, Barboule N, Wasylyk B. Oncogene 20 1267-1275 (2001)
  134. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P, Scheel H, Hofmann K, Thumm M, Wolf DH. Mol. Biol. Cell 19 3323-3333 (2008)
  135. A ubiquitin ligase HRD1 promotes the degradation of Pael receptor, a substrate of Parkin. Omura T, Kaneko M, Okuma Y, Orba Y, Nagashima K, Takahashi R, Fujitani N, Matsumura S, Hata A, Kubota K, Murahashi K, Uehara T, Nomura Y. J. Neurochem. 99 1456-1469 (2006)
  136. Molecular basis of Pirh2-mediated p53 ubiquitylation. Sheng Y, Laister RC, Lemak A, Wu B, Tai E, Duan S, Lukin J, Sunnerhagen M, Srisailam S, Karra M, Benchimol S, Arrowsmith CH. Nat. Struct. Mol. Biol. 15 1334-1342 (2008)
  137. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, Mace PD, Riedl SJ. Nature 529 546-550 (2016)
  138. The trans-Golgi network-associated human ubiquitin-protein ligase POSH is essential for HIV type 1 production. Alroy I, Tuvia S, Greener T, Gordon D, Barr HM, Taglicht D, Mandil-Levin R, Ben-Avraham D, Konforty D, Nir A, Levius O, Bicoviski V, Dori M, Cohen S, Yaar L, Erez O, Propheta-Meiran O, Koskas M, Caspi-Bachar E, Alchanati I, Sela-Brown A, Moskowitz H, Tessmer U, Schubert U, Reiss Y. Proc. Natl. Acad. Sci. U.S.A. 102 1478-1483 (2005)
  139. Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. Burroughs AM, Jaffee M, Iyer LM, Aravind L. J. Struct. Biol. 162 205-218 (2008)
  140. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. Wang M, Cheng D, Peng J, Pickart CM. EMBO J. 25 1710-1719 (2006)
  141. Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression. Xu Y, Ahn JH, Cheng M, apRhys CM, Chiou CJ, Zong J, Matunis MJ, Hayward GS. J. Virol. 75 10683-10695 (2001)
  142. Three-dimensional structure of the anaphase-promoting complex. Gieffers C, Dube P, Harris JR, Stark H, Peters JM. Mol. Cell 7 907-913 (2001)
  143. The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Lee DH, Choi HW, Choi HW, Hwang BK. Plant Physiol. 156 2011-2025 (2011)
  144. C-Cbl binds the CSF-1 receptor at tyrosine 973, a novel phosphorylation site in the receptor's carboxy-terminus. Wilhelmsen K, Burkhalter S, van der Geer P. Oncogene 21 1079-1089 (2002)
  145. TULA: an SH3- and UBA-containing protein that binds to c-Cbl and ubiquitin. Feshchenko EA, Smirnova EV, Swaminathan G, Teckchandani AM, Agrawal R, Band H, Zhang X, Annan RS, Carr SA, Tsygankov AY. Oncogene 23 4690-4706 (2004)
  146. A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation. Pennock S, Wang Z. Mol. Cell. Biol. 28 3020-3037 (2008)
  147. Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING. Massiah MA, Simmons BN, Short KM, Cox TC. J. Mol. Biol. 358 532-545 (2006)
  148. Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Siatecka M, Xue L, Bieker JJ. Mol. Cell. Biol. 27 8547-8560 (2007)
  149. The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase. Oh KJ, Kalinina A, Wang J, Nakayama K, Nakayama KI, Bagchi S. J. Virol. 78 5338-5346 (2004)
  150. The ubiquitin E3 ligase MARCH7 is differentially regulated by the deubiquitylating enzymes USP7 and USP9X. Nathan JA, Sengupta S, Wood SA, Admon A, Markson G, Sanderson C, Lehner PJ. Traffic 9 1130-1145 (2008)
  151. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage. Takagi Y, Masuda CA, Chang WH, Komori H, Wang D, Hunter T, Joazeiro CA, Kornberg RD. Mol. Cell 18 237-243 (2005)
  152. Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Notenboom V, Hibbert RG, van Rossum-Fikkert SE, Olsen JV, Mann M, Sixma TK. Nucleic Acids Res. 35 5819-5830 (2007)
  153. Cbl and Cbl-b in T-cell regulation. Liu YC, Gu H. Trends Immunol. 23 140-143 (2002)
  154. Drosophila Roc1a encodes a RING-H2 protein with a unique function in processing the Hh signal transducer Ci by the SCF E3 ubiquitin ligase. Noureddine MA, Donaldson TD, Thacker SA, Duronio RJ. Dev. Cell 2 757-770 (2002)
  155. A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database. Jiménez JL, Hegemann B, Hutchins JR, Peters JM, Durbin R. Genome Biol. 8 R90 (2007)
  156. Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. Paolino M, Thien CB, Gruber T, Hinterleitner R, Baier G, Langdon WY, Penninger JM. J Immunol 186 2138-2147 (2011)
  157. Autoubiquitylation of the V(D)J recombinase protein RAG1. Jones JM, Gellert M. Proc. Natl. Acad. Sci. U.S.A. 100 15446-15451 (2003)
  158. Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of Mdm2. Singh RK, Iyappan S, Scheffner M. J Biol Chem 282 10901-10907 (2007)
  159. The NEF4 complex regulates Rad4 levels and utilizes Snf2/Swi2-related ATPase activity for nucleotide excision repair. Ramsey KL, Smith JJ, Dasgupta A, Maqani N, Grant P, Auble DT. Mol. Cell. Biol. 24 6362-6378 (2004)
  160. Cbl-mediated ubiquitinylation and negative regulation of Vav. Miura-Shimura Y, Duan L, Rao NL, Reddi AL, Shimura H, Rottapel R, Druker BJ, Tsygankov A, Band V, Band H. J. Biol. Chem. 278 38495-38504 (2003)
  161. Multiple activities contribute to Pc2 E3 function. Kagey MH, Melhuish TA, Powers SE, Wotton D. EMBO J. 24 108-119 (2005)
  162. Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. French ME, Kretzmann BR, Hicke L. J. Biol. Chem. 284 12071-12079 (2009)
  163. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, Mohamed WI, Faty M, Petzold G, Beckwith RE, Tichkule RB, Hassiepen U, Abdulrahman W, Pantelic RS, Matsumoto S, Sugasawa K, Stahlberg H, Thomä NH. Nature 531 598-603 (2016)
  164. FGF receptors ubiquitylation: dependence on tyrosine kinase activity and role in downregulation. Monsonego-Ornan E, Adar R, Rom E, Yayon A. FEBS Lett. 528 83-89 (2002)
  165. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Burroughs AM, Iyer LM, Aravind L. Mol Biosyst 7 2261-2277 (2011)
  166. Phyllopod acts as an adaptor protein to link the sina ubiquitin ligase to the substrate protein tramtrack. Li S, Xu C, Carthew RW. Mol. Cell. Biol. 22 6854-6865 (2002)
  167. Rapid ubiquitination of Syk following GPVI activation in platelets. Dangelmaier CA, Quinter PG, Jin J, Tsygankov AY, Kunapuli SP, Daniel JL. Blood 105 3918-3924 (2005)
  168. Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. Imai N, Matsuda N, Tanaka K, Nakano A, Matsumoto S, Kang W. J. Virol. 77 923-930 (2003)
  169. Lysine 63-linked polyubiquitination of the dopamine transporter requires WW3 and WW4 domains of Nedd4-2 and UBE2D ubiquitin-conjugating enzymes. Vina-Vilaseca A, Sorkin A. J. Biol. Chem. 285 7645-7656 (2010)
  170. Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E. Volpon L, Osborne MJ, Capul AA, de la Torre JC, Borden KL. Proc. Natl. Acad. Sci. U.S.A. 107 5441-5446 (2010)
  171. Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Tu D, Li W, Ye Y, Brunger AT. Proc. Natl. Acad. Sci. U.S.A. 104 15599-15606 (2007)
  172. The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor. Zhang L, Fairall L, Goult BT, Calkin AC, Hong C, Millard CJ, Tontonoz P, Schwabe JW. Genes Dev. 25 1262-1274 (2011)
  173. The mouse mahoganoid coat color mutation disrupts a novel C3HC4 RING domain protein. Phan LK, Lin F, LeDuc CA, Chung WK, Leibel RL. J. Clin. Invest. 110 1449-1459 (2002)
  174. High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice protein whose expression is increased upon exposure to pathogen-derived oligosaccharides. Katoh S, Hong C, Tsunoda Y, Murata K, Takai R, Minami E, Yamazaki T, Katoh E. J. Biol. Chem. 278 15341-15348 (2003)
  175. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Huang DT, Zhuang M, Ayrault O, Schulman BA. Nat. Struct. Mol. Biol. 15 280-287 (2008)
  176. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Lewis MJ, Vyse S, Shields AM, Boeltz S, Gordon PA, Spector TD, Lehner PJ, Walczak H, Vyse TJ. Am. J. Hum. Genet. 96 221-234 (2015)
  177. Model for the interaction of gammaherpesvirus 68 RING-CH finger protein mK3 with major histocompatibility complex class I and the peptide-loading complex. Wang X, Lybarger L, Connors R, Harris MR, Hansen TH. J. Virol. 78 8673-8686 (2004)
  178. A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Metzger MB, Liang YH, Das R, Mariano J, Li S, Li J, Kostova Z, Byrd RA, Ji X, Weissman AM. Mol. Cell 50 516-527 (2013)
  179. Molecular organization of the cullin E3 ligase adaptor KCTD11. Correale S, Pirone L, Di Marcotullio L, De Smaele E, Greco A, Mazzà D, Moretti M, Alterio V, Vitagliano L, Di Gaetano S, Gulino A, Pedone EM. Biochimie 93 715-724 (2011)
  180. Sequence determinants of E2-E6AP binding affinity and specificity. Eletr ZM, Kuhlman B. J. Mol. Biol. 369 419-428 (2007)
  181. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway. Duda DM, van Waardenburg RC, Borg LA, McGarity S, Nourse A, Waddell MB, Bjornsti MA, Schulman BA. J. Mol. Biol. 369 619-630 (2007)
  182. T cell development and T cell responses in mice with mutations affecting tyrosines 292 or 315 of the ZAP-70 protein tyrosine kinase. Magnan A, Di Bartolo V, Mura AM, Boyer C, Richelme M, Lin YL, Roure A, Gillet A, Arrieumerlou C, Acuto O, Malissen B, Malissen M. J. Exp. Med. 194 491-505 (2001)
  183. Identification of TINO: a new evolutionarily conserved BCL-2 AU-rich element RNA-binding protein. Donnini M, Lapucci A, Papucci L, Witort E, Jacquier A, Brewer G, Nicolin A, Capaccioli S, Schiavone N. J. Biol. Chem. 279 20154-20166 (2004)
  184. Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. Yogosawa S, Miyauchi Y, Honda R, Tanaka H, Yasuda H. Biochem. Biophys. Res. Commun. 302 869-872 (2003)
  185. Molecular insights into the function of RING finger (RNF)-containing proteins hRNF8 and hRNF168 in Ubc13/Mms2-dependent ubiquitylation. Campbell SJ, Edwards RA, Leung CC, Neculai D, Hodge CD, Dhe-Paganon S, Glover JN. J. Biol. Chem. 287 23900-23910 (2012)
  186. Prediction of lysine ubiquitination with mRMR feature selection and analysis. Cai Y, Huang T, Hu L, Shi X, Xie L, Li Y. Amino Acids 42 1387-1395 (2012)
  187. Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Duan X, Sarangi P, Liu X, Rangi GK, Zhao X, Ye H. Mol. Cell 35 657-668 (2009)
  188. Alternative ubiquitin activation/conjugation cascades interact with N-end rule ubiquitin ligases to control degradation of RGS proteins. Lee PC, Sowa ME, Gygi SP, Harper JW. Mol. Cell 43 392-405 (2011)
  189. Determinants of functionality in the ubiquitin conjugating enzyme family. Winn PJ, Religa TL, Battey JN, Banerjee A, Wade RC. Structure 12 1563-1574 (2004)
  190. Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase. Levin I, Eakin C, Blanc MP, Klevit RE, Miller SI, Brzovic PS. Proc. Natl. Acad. Sci. U.S.A. 107 2848-2853 (2010)
  191. A RING E3-substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases. Calabrese MF, Scott DC, Duda DM, Grace CR, Kurinov I, Kriwacki RW, Schulman BA. Nat. Struct. Mol. Biol. 18 947-949 (2011)
  192. An altered-specificity ubiquitin-conjugating enzyme/ubiquitin-protein ligase pair. Winkler GS, Albert TK, Dominguez C, Legtenberg YI, Boelens R, Timmers HT. J. Mol. Biol. 337 157-165 (2004)
  193. E1-E2 interactions in ubiquitin and Nedd8 ligation pathways. Tokgöz Z, Siepmann TJ, Streich F, Kumar B, Klein JM, Haas AL. J. Biol. Chem. 287 311-321 (2012)
  194. Human proteome-scale structural modeling of E2-E3 interactions exploiting interface motifs. Kar G, Keskin O, Nussinov R, Gursoy A. J. Proteome Res. 11 1196-1207 (2012)
  195. Discrete domains of MARCH1 mediate its localization, functional interactions, and posttranscriptional control of expression. Jabbour M, Campbell EM, Fares H, Lybarger L. J. Immunol. 183 6500-6512 (2009)
  196. Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway. Matsuzawa S, Cuddy M, Fukushima T, Reed JC. Proc. Natl. Acad. Sci. U.S.A. 102 14982-14987 (2005)
  197. The E3 ubiquitin-ligase Bmi1/Ring1A controls the proteasomal degradation of Top2alpha cleavage complex - a potentially new drug target. Alchanati I, Teicher C, Cohen G, Shemesh V, Barr HM, Nakache P, Ben-Avraham D, Idelevich A, Angel I, Livnah N, Tuvia S, Reiss Y, Taglicht D, Erez O. PLoS ONE 4 e8104 (2009)
  198. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Afroz T, Skrisovska L, Belloc E, Guillén-Boixet J, Méndez R, Allain FH. Genes Dev. 28 1498-1514 (2014)
  199. Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions. Lin DY, Diao J, Chen J. Proc. Natl. Acad. Sci. U.S.A. 109 1925-1930 (2012)
  200. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible Degrader of the LDLR (IDOL). Sorrentino V, Scheer L, Santos A, Reits E, Bleijlevens B, Zelcer N. J. Biol. Chem. 286 30190-30199 (2011)
  201. The TRAF6 RING finger domain mediates physical interaction with Ubc13. Wooff J, Pastushok L, Hanna M, Fu Y, Xiao W. FEBS Lett. 566 229-233 (2004)
  202. Zebrafish Mib and Mib2 are mutual E3 ubiquitin ligases with common and specific delta substrates. Zhang C, Li Q, Jiang YJ. J. Mol. Biol. 366 1115-1128 (2007)
  203. A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Burande CF, Heuzé ML, Lamsoul I, Monsarrat B, Uttenweiler-Joseph S, Lutz PG. Mol. Cell Proteomics 8 1719-1727 (2009)
  204. Anti-Ro52 autoantibodies from patients with Sjögren's syndrome inhibit the Ro52 E3 ligase activity by blocking the E3/E2 interface. Espinosa A, Hennig J, Ambrosi A, Anandapadmanaban M, Abelius MS, Sheng Y, Nyberg F, Arrowsmith CH, Sunnerhagen M, Wahren-Herlenius M. J. Biol. Chem. 286 36478-36491 (2011)
  205. Pellino proteins contain a cryptic FHA domain that mediates interaction with phosphorylated IRAK1. Lin CC, Huoh YS, Schmitz KR, Jensen LE, Ferguson KM. Structure 16 1806-1816 (2008)
  206. Crystal structure of KLHL3 in complex with Cullin3. Ji AX, Privé GG. PLoS ONE 8 e60445 (2013)
  207. Functional cooperation between c-Cbl and Src-like adaptor protein 2 in the negative regulation of T-cell receptor signaling. Loreto MP, Berry DM, McGlade CJ. Mol. Cell. Biol. 22 4241-4255 (2002)
  208. Regulation of ubiquitin transfer by XIAP, a dimeric RING E3 ligase. Nakatani Y, Kleffmann T, Linke K, Condon SM, Hinds MG, Day CL. Biochem. J. 450 629-638 (2013)
  209. Mutant Cbl proteins as oncogenic drivers in myeloproliferative disorders. Naramura M, Nadeau S, Mohapatra B, Ahmad G, Mukhopadhyay C, Sattler M, Raja SM, Natarajan A, Band V, Band H. Oncotarget 2 245-250 (2011)
  210. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae. Singh RK, Gonzalez M, Kabbaj MH, Gunjan A. PLoS ONE 7 e36295 (2012)
  211. The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme. Ryan PE, Sivadasan-Nair N, Nau MM, Nicholas S, Lipkowitz S. J. Biol. Chem. 285 23687-23698 (2010)
  212. Tripartite motif ligases catalyze polyubiquitin chain formation through a cooperative allosteric mechanism. Streich FC, Ronchi VP, Connick JP, Haas AL. J. Biol. Chem. 288 8209-8221 (2013)
  213. Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase. Lyumkis D, Doamekpor SK, Bengtson MH, Lee JW, Toro TB, Petroski MD, Lima CD, Potter CS, Carragher B, Joazeiro CA. Proc. Natl. Acad. Sci. U.S.A. 110 1702-1707 (2013)
  214. Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Duda DM, Olszewski JL, Tron AE, Hammel M, Lambert LJ, Waddell MB, Mittag T, DeCaprio JA, Schulman BA. Mol. Cell 47 371-382 (2012)
  215. White spot syndrome virus open reading frame 222 encodes a viral E3 ligase and mediates degradation of a host tumor suppressor via ubiquitination. He F, Fenner BJ, Godwin AK, Kwang J. J. Virol. 80 3884-3892 (2006)
  216. Active site residues and amino acid specificity of the ubiquitin carrier protein-binding RING-H2 finger domain. Katoh S, Tsunoda Y, Murata K, Minami E, Katoh E. J. Biol. Chem. 280 41015-41024 (2005)
  217. Cell cycle deregulation by a poxvirus partial mimic of anaphase-promoting complex subunit 11. Mo M, Fleming SB, Mercer AA. Proc. Natl. Acad. Sci. U.S.A. 106 19527-19532 (2009)
  218. Comparison of the SUMO1 and ubiquitin conjugation pathways during the inhibition of proteasome activity with evidence of SUMO1 recycling. Bailey D, O'Hare P. Biochem. J. 392 271-281 (2005)
  219. E2-c-Cbl recognition is necessary but not sufficient for ubiquitination activity. Huang A, de Jong RN, Wienk H, Winkler GS, Timmers HT, Boelens R. J. Mol. Biol. 385 507-519 (2009)
  220. En bloc transfer of polyubiquitin chains to PCNA in vitro is mediated by two different human E2-E3 pairs. Masuda Y, Suzuki M, Kawai H, Hishiki A, Hashimoto H, Masutani C, Hishida T, Suzuki F, Kamiya K. Nucleic Acids Res. 40 10394-10407 (2012)
  221. Nef-mediated lipid raft exclusion of UbcH7 inhibits Cbl activity in T cells to positively regulate signaling. Simmons A, Gangadharan B, Hodges A, Sharrocks K, Prabhakar S, García A, Dwek R, Zitzmann N, McMichael A. Immunity 23 621-634 (2005)
  222. Role of TRIM5α RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus. Kim J, Tipper C, Sodroski J. J. Virol. 85 8116-8132 (2011)
  223. Structural analysis of human FANCL, the E3 ligase in the Fanconi anemia pathway. Hodson C, Cole AR, Lewis LP, Miles JA, Purkiss A, Walden H. J. Biol. Chem. 286 32628-32637 (2011)
  224. bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish. Yergeau DA, Cornell CN, Parker SK, Zhou Y, Detrich HW. Dev. Biol. 283 97-112 (2005)
  225. c-Cbl interacts with CD38 and promotes retinoic acid-induced differentiation and G0 arrest of human myeloblastic leukemia cells. Shen M, Yen A. Cancer Res. 68 8761-8769 (2008)
  226. Direct and indirect control of mitogen-activated protein kinase pathway-associated components, BRAP/IMP E3 ubiquitin ligase and CRAF/RAF1 kinase, by the deubiquitylating enzyme USP15. Hayes SD, Liu H, MacDonald E, Sanderson CM, Coulson JM, Clague MJ, Urbé S. J. Biol. Chem. 287 43007-43018 (2012)
  227. Selective recruitment of an E2~ubiquitin complex by an E3 ubiquitin ligase. Spratt DE, Wu K, Kovacev J, Pan ZQ, Shaw GS. J. Biol. Chem. 287 17374-17385 (2012)
  228. The basis for selective E1-E2 interactions in the ISG15 conjugation system. Durfee LA, Kelley ML, Huibregtse JM. J. Biol. Chem. 283 23895-23902 (2008)
  229. Immunohistochemical localization of a ubiquitin ligase HRD1 in murine brain. Omura T, Kaneko M, Tabei N, Okuma Y, Nomura Y. J. Neurosci. Res. 86 1577-1587 (2008)
  230. RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene. Brauweiler A, Lorick KL, Lee JP, Tsai YC, Chan D, Weissman AM, Drabkin HA, Gemmill RM. Oncogene 26 2263-2271 (2007)
  231. Solution structure of the ubiquitin-conjugating enzyme UbcH5B. Houben K, Dominguez C, van Schaik FM, Timmers HT, Bonvin AM, Boelens R. J. Mol. Biol. 344 513-526 (2004)
  232. Williams-Beuren syndrome TRIM50 encodes an E3 ubiquitin ligase. Micale L, Fusco C, Augello B, Napolitano LM, Dermitzakis ET, Meroni G, Merla G, Reymond A. Eur. J. Hum. Genet. 16 1038-1049 (2008)
  233. Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA. PLoS ONE 5 e15805 (2010)
  234. Novel functions of ubiquitin ligase HRD1 with transmembrane and proline-rich domains. Omura T, Kaneko M, Onoguchi M, Koizumi S, Itami M, Ueyama M, Okuma Y, Nomura Y. J. Pharmacol. Sci. 106 512-519 (2008)
  235. Cbl controls EGFR fate by regulating early endosome fusion. Visser Smit GD, Place TL, Cole SL, Clausen KA, Vemuganti S, Zhang G, Koland JG, Lill NL. Sci Signal 2 ra86 (2009)
  236. Structural and functional comparison of the RING domains of two p53 E3 ligases, Mdm2 and Pirh2. Shloush J, Vlassov JE, Engson I, Duan S, Saridakis V, Dhe-Paganon S, Raught B, Sheng Y, Arrowsmith CH. J. Biol. Chem. 286 4796-4808 (2011)
  237. Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. Carlile CM, Pickart CM, Matunis MJ, Cohen RE. J. Biol. Chem. 284 29326-29334 (2009)
  238. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members. Kamanova J, Sun H, Lara-Tejero M, Galán JE. PLoS Pathog. 12 e1005552 (2016)
  239. Msl1-mediated dimerization of the dosage compensation complex is essential for male X-chromosome regulation in Drosophila. Hallacli E, Lipp M, Georgiev P, Spielman C, Cusack S, Akhtar A, Kadlec J. Mol. Cell 48 587-600 (2012)
  240. Pellino1 is required for interferon production by viral double-stranded RNA. Enesa K, Ordureau A, Smith H, Barford D, Cheung PC, Patterson-Kane J, Arthur JS, Cohen P. J. Biol. Chem. 287 34825-34835 (2012)
  241. Structural organization and Zn2+-dependent subdomain interactions involving autoantigenic epitopes in the Ring-B-box-coiled-coil (RBCC) region of Ro52. Hennig J, Ottosson L, Andrésen C, Horvath L, Kuchroo VK, Broo K, Wahren-Herlenius M, Sunnerhagen M. J Biol Chem 280 33250-33261 (2005)
  242. Expression of the immune regulator tripartite-motif 21 is controlled by IFN regulatory factors. Sjöstrand M, Ambrosi A, Brauner S, Sullivan J, Malin S, Kuchroo VK, Espinosa A, Wahren-Herlenius M. J Immunol 191 3753-3763 (2013)
  243. Protein-protein interactions regulate Ubl conjugation. Knipscheer P, Sixma TK. Curr. Opin. Struct. Biol. 17 665-673 (2007)
  244. RING domains functioning as E3 ligases reveal distinct structural features: a molecular dynamics simulation study. Zhao JH, Yang CT, Wu JW, Tsai WB, Lin HY, Fang HW, Ho Y, Liu HL. J. Biomol. Struct. Dyn. 26 65-74 (2008)
  245. Role of the RING-CH domain of viral ligase mK3 in ubiquitination of non-lysine and lysine MHC I residues. Herr RA, Harris J, Fang S, Wang X, Hansen TH. Traffic 10 1301-1317 (2009)
  246. The RING Finger Ubiquitin E3 Ligase OsHTAS Enhances Heat Tolerance by Promoting H2O2-Induced Stomatal Closure in Rice. Liu J, Zhang C, Wei C, Liu X, Wang M, Yu F, Xie Q, Tu J. Plant Physiol. 170 429-443 (2016)
  247. Identification of molecular determinants required for interaction of ubiquitin-conjugating enzymes and RING finger proteins. Martinez-Noel G, Müller U, Harbers K. Eur. J. Biochem. 268 5912-5919 (2001)
  248. It takes two to tango: Ubiquitin and SUMO in the DNA damage response. Bologna S, Ferrari S. Front Genet 4 106 (2013)
  249. Novel control of S phase of the cell cycle by ubiquitin-conjugating enzyme H7. Whitcomb EA, Dudek EJ, Liu Q, Taylor A. Mol. Biol. Cell 20 1-9 (2009)
  250. The RING-H2-finger protein APC11 as a target of hydrogen peroxide. Chang TS, Jeong W, Lee DY, Cho CS, Rhee SG. Free Radic. Biol. Med. 37 521-530 (2004)
  251. UBE2W interacts with FANCL and regulates the monoubiquitination of Fanconi anemia protein FANCD2. Zhang Y, Zhou X, Zhao L, Li C, Zhu H, Xu L, Shan L, Liao X, Guo Z, Huang P. Mol. Cells 31 113-122 (2011)
  252. hVPS41 is expressed in multiple isoforms and can associate with vesicles through a RING-H2 finger motif. McVey Ward D, Radisky D, Scullion MA, Tuttle MS, Vaughn M, Kaplan J. Exp. Cell Res. 267 126-134 (2001)
  253. An evolutionary screen highlights canonical and noncanonical candidate antiviral genes within the primate TRIM gene family. Malfavon-Borja R, Sawyer SL, Wu LI, Emerman M, Malik HS. Genome Biol Evol 5 2141-2154 (2013)
  254. Correlation between recombinase activating gene 1 ubiquitin ligase activity and V(D)J recombination. Simkus C, Bhattacharyya A, Zhou M, Veenstra TD, Jones JM. Immunology 128 206-217 (2009)
  255. Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation. Braun B, Pfirrmann T, Menssen R, Hofmann K, Scheel H, Wolf DH. FEBS Lett. 585 3856-3861 (2011)
  256. RNF168 forms a functional complex with RAD6 during the DNA damage response. Liu C, Wang D, Wu J, Keller J, Ma T, Yu X. J. Cell. Sci. 126 2042-2051 (2013)
  257. The MID1 E3 ligase catalyzes the polyubiquitination of Alpha4 (α4), a regulatory subunit of protein phosphatase 2A (PP2A): novel insights into MID1-mediated regulation of PP2A. Du H, Huang Y, Zaghlula M, Walters E, Cox TC, Massiah MA. J. Biol. Chem. 288 21341-21350 (2013)
  258. Analysis of RING finger genes required for embryogenesis in C. elegans. Moore R, Boyd L. Genesis 38 1-12 (2004)
  259. Engineering a ubiquitin ligase reveals conformational flexibility required for ubiquitin transfer. Qian SB, Waldron L, Choudhary N, Klevit RE, Chazin WJ, Patterson C. J. Biol. Chem. 284 26797-26802 (2009)
  260. SCF E3-mediated autoubiquitination negatively regulates activity of Cdc34 E2 but plays a nonessential role in the catalytic cycle in vitro and in vivo. Scaglione KM, Bansal PK, Deffenbaugh AE, Kiss A, Moore JM, Korolev S, Cocklin R, Goebl M, Kitagawa K, Skowyra D. Mol. Cell. Biol. 27 5860-5870 (2007)
  261. The ubiquitin conjugating enzyme, UbcM2, engages in novel interactions with components of cullin-3 based E3 ligases. Plafker KS, Singer JD, Plafker SM. Biochemistry 48 3527-3537 (2009)
  262. Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity. Stacey KB, Breen E, Jefferies CA. PLoS ONE 7 e34041 (2012)
  263. c-Cbl promotes T cell receptor-induced thymocyte apoptosis by activating the phosphatidylinositol 3-kinase/Akt pathway. Thien CB, Dagger SA, Steer JH, Koentgen F, Jansen ES, Scott CL, Langdon WY. J. Biol. Chem. 285 10969-10981 (2010)
  264. An initial biochemical and cell biological characterization of the mammalian homologue of a central plant developmental switch, COP1. Yi C, Wang H, Wei N, Deng XW. BMC Cell Biol. 3 30 (2002)
  265. Asymmetric nature of two subunits of RAD18, a RING-type ubiquitin ligase E3, in the human RAD6A-RAD18 ternary complex. Masuda Y, Suzuki M, Kawai H, Suzuki F, Kamiya K. Nucleic Acids Res. 40 1065-1076 (2012)
  266. Identifying determinants of cullin binding specificity among the three functionally different Drosophila melanogaster Roc proteins via domain swapping. Reynolds PJ, Simms JR, Duronio RJ. PLoS ONE 3 e2918 (2008)
  267. Mulan E3 ubiquitin ligase interacts with multiple E2 conjugating enzymes and participates in mitophagy by recruiting GABARAP. Ambivero CT, Cilenti L, Main S, Zervos AS. Cell. Signal. 26 2921-2929 (2014)
  268. The essential Ubc4/Ubc5 function in yeast is HECT E3-dependent, and RING E3-dependent pathways require only monoubiquitin transfer by Ubc4. Stoll KE, Brzovic PS, Davis TN, Klevit RE. J. Biol. Chem. 286 15165-15170 (2011)
  269. The fellowship of the RING: the RING-B-box linker region interacts with the RING in TRIM21/Ro52, contains a native autoantigenic epitope in Sjögren syndrome, and is an integral and conserved region in TRIM proteins. Hennig J, Bresell A, Sandberg M, Hennig KD, Wahren-Herlenius M, Persson B, Sunnerhagen M. J. Mol. Biol. 377 431-449 (2008)
  270. The proinflammatory role of HECTD2 in innate immunity and experimental lung injury. Coon TA, McKelvey AC, Lear T, Rajbhandari S, Dunn SR, Connelly W, Zhao JY, Han S, Liu Y, Weathington NM, McVerry BJ, Zhang Y, Chen BB. Sci Transl Med 7 295ra109 (2015)
  271. Up-regulation of the Cbl family of ubiquitin ligases is involved in ATRA and bufalin-induced cell adhesion but not cell differentiation. Qu X, Liu Y, Ma Y, Zhang Y, Li Y, Hou K. Biochem. Biophys. Res. Commun. 367 183-189 (2008)
  272. c-Cbl tyrosine kinase-binding domain mutant G306E abolishes the interaction of c-Cbl with CD38 and fails to promote retinoic acid-induced cell differentiation and G0 arrest. Shen M, Yen A. J. Biol. Chem. 284 25664-25677 (2009)
  273. A small ubiquitin binding domain inhibits ubiquitin-dependent protein recruitment to DNA repair foci. Helchowski CM, Skow LF, Roberts KH, Chute CL, Canman CE. Cell Cycle 12 3749-3758 (2013)
  274. article-commentary Cbl exposes its RING finger. Kales SC, Ryan PE, Lipkowitz S. Nat. Struct. Mol. Biol. 19 131-133 (2012)
  275. Molecular recognition of Cullin3 by KCTDs: insights from experimental and computational investigations. Balasco N, Pirone L, Smaldone G, Di Gaetano S, Esposito L, Pedone EM, Vitagliano L. Biochim. Biophys. Acta 1844 1289-1298 (2014)
  276. Release from myosin V via regulated recruitment of an E3 ubiquitin ligase controls organelle localization. Yau RG, Peng Y, Valiathan RR, Birkeland SR, Wilson TE, Weisman LS. Dev. Cell 28 520-533 (2014)
  277. The ability of TRIM3 to induce growth arrest depends on RING-dependent E3 ligase activity. Raheja R, Liu Y, Hukkelhoven E, Yeh N, Koff A. Biochem. J. 458 537-545 (2014)
  278. Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus-Encoded βC1. Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, Xie Q, Zhou X. Mol Plant 9 911-925 (2016)
  279. Ubiquitin-conjugating enzyme UBE2D2 is responsible for FBXW2 (F-box and WD repeat domain containing 2)-mediated human GCM1 (glial cell missing homolog 1) ubiquitination and degradation. Chiang MH, Chen LF, Chen H. Biol. Reprod. 79 914-920 (2008)
  280. BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt DE, Guerinot ML. Metallomics 9 876-890 (2017)
  281. Biochemical basis for the requirement of kinase activity for Cbl-dependent ubiquitinylation and degradation of a target tyrosine kinase. Ghosh AK, Reddi AL, Rao NL, Duan L, Band V, Band H. J. Biol. Chem. 279 36132-36141 (2004)
  282. Creation of a pluripotent ubiquitin-conjugating enzyme. Ptak C, Gwozd C, Huzil JT, Gwozd TJ, Garen G, Ellison MJ. Mol. Cell. Biol. 21 6537-6548 (2001)
  283. Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Yu C, Mao H, Novitsky EJ, Tang X, Rychnovsky SD, Zheng N, Huang L. Nat Commun 6 10053 (2015)
  284. Identification of three immediate-early genes of white spot syndrome virus. Lin F, Huang H, Xu L, Li F, Yang F. Arch. Virol. 156 1611-1614 (2011)
  285. Interactions within the ubiquitin pathway of Caenorhabditis elegans. Gudgen M, Chandrasekaran A, Frazier T, Boyd L. Biochem. Biophys. Res. Commun. 325 479-486 (2004)
  286. Apoptosis signaling by the novel compound 3-Cl-AHPC involves increased EGFR proteolysis and accompanying decreased phosphatidylinositol 3-kinase and AKT kinase activities. Farhana L, Dawson MI, Huang Y, Zhang Y, Rishi AK, Reddy KB, Freeman RS, Fontana JA. Oncogene 23 1874-1884 (2004)
  287. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation. Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M. J. Biol. Chem. 288 36312-36327 (2013)
  288. Measuring rates of ubiquitin chain formation as a functional readout of ligase activity. Ronchi VP, Haas AL. Methods Mol. Biol. 832 197-218 (2012)
  289. RNF152, a novel lysosome localized E3 ligase with pro-apoptotic activities. Zhang S, Wu W, Wu Y, Zheng J, Suo T, Tang H, Tang J. Protein Cell 1 656-663 (2010)
  290. The ubiquitin-conjugating enzyme, UbcM2, is restricted to monoubiquitylation by a two-fold mechanism that involves backside residues of E2 and Lys48 of ubiquitin. Nguyen L, Plafker KS, Starnes A, Cook M, Klevit RE, Plafker SM. Biochemistry 53 4004-4014 (2014)
  291. Enzyme E2 from Chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins. Chen AJ, Wang S, Zhao XF, Yu XQ, Wang JX. J. Virol. 85 8069-8079 (2011)
  292. HRD1 levels increased by zonisamide prevented cell death and caspase-3 activation caused by endoplasmic reticulum stress in SH-SY5Y cells. Omura T, Asari M, Yamamoto J, Kamiyama N, Oka K, Hoshina C, Maseda C, Awaya T, Tasaki Y, Shiono H, Shimizu K, Matsubara K. J. Mol. Neurosci. 46 527-535 (2012)
  293. Cloning and characterization of a gene encoding the human putative ubiquitin conjugating enzyme E2Z (UBE2Z). Gu X, Zhao F, Zheng M, Fei X, Chen X, Huang S, Xie Y, Mao Y. Mol. Biol. Rep. 34 183-188 (2007)
  294. NMR assignment of the arenaviral protein Z from Lassa fever virus. Volpon L, Osborne MJ, Borden KL. Biomol NMR Assign 2 81-84 (2008)
  295. New structural clues to substrate specificity in the "ubiquitin system". Hochstrasser M. Mol. Cell 9 453-454 (2002)
  296. The Cbl RING finger C-terminal flank controls epidermal growth factor receptor fate downstream of receptor ubiquitination. Visser GD, Lill NL. Exp. Cell Res. 311 281-293 (2005)
  297. Casitas B-lineage lymphoma mutants activate AKT to induce transformation in cooperation with class III receptor tyrosine kinases. Polzer H, Janke H, Schmid D, Hiddemann W, Spiekermann K. Exp. Hematol. 41 271-80.e4 (2013)
  298. Label free fragment screening using surface plasmon resonance as a tool for fragment finding - analyzing parkin, a difficult CNS target. Regnström K, Yan J, Nguyen L, Callaway K, Yang Y, Diep L, Xing W, Adhikari A, Beroza P, Hom RK, Riley B, Rudolph D, Jobling MF, Baker J, Johnston J, Konradi A, Bova MP, Artis DR. PLoS ONE 8 e66879 (2013)
  299. Study of Cbl-b dynamics in peripheral blood lymphocytes isolated from patients with multiple sclerosis. Zhou WB, Wang R, Deng YN, Ji XB, Huang GX, Xu YZ. Neurosci. Lett. 440 336-339 (2008)
  300. research-article Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7. Whitcomb EA, Taylor A. Cell Div 4 17 (2009)
  301. Ubiquitin- and ubiquitin-like proteins-conjugating enzymes (E2s) in breast cancer. Voutsadakis IA. Mol. Biol. Rep. 40 2019-2034 (2013)
  302. Ubiquitination of an artificial RING finger without a substrate and a tag. Miyamoto K. J. Pept. Sci. 18 135-139 (2012)
  303. A matrix based algorithm for Protein-Protein Interaction prediction using Domain-Domain Associations. Binny Priya S, Saha S, Anishetty R, Anishetty S. J. Theor. Biol. 326 36-42 (2013)
  304. An essential role of ubiquitination in Cbl-mediated negative regulation of the Src-family kinase Fyn. Rao N, Ghosh AK, Douillard P, Andoniou CE, Zhou P, Band H. Signal Transduct 2 29-39 (2002)
  305. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity. Raychaudhuri S, Espenshade PJ. J. Biol. Chem. 290 14430-14440 (2015)
  306. High yield expression and NMR characterization of Arkadia E3 ubiquitin ligase RING-H2 finger domain. Kandias NG, Chasapis CT, Bentrop D, Episkopou V, Spyroulias GA. Biochem. Biophys. Res. Commun. 378 498-502 (2009)
  307. NMR and X-RAY structures of human E2-like ubiquitin-fold modifier conjugating enzyme 1 (UFC1) reveal structural and functional conservation in the metazoan UFM1-UBA5-UFC1 ubiquination pathway. Liu G, Forouhar F, Eletsky A, Atreya HS, Aramini JM, Xiao R, Huang YJ, Abashidze M, Seetharaman J, Liu J, Rost B, Acton T, Montelione GT, Hunt JF, Szyperski T. J. Struct. Funct. Genomics 10 127-136 (2009)
  308. Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity. Nomura K, Klejnot M, Kowalczyk D, Hock AK, Sibbet GJ, Vousden KH, Huang DT. Nat. Struct. Mol. Biol. 24 578-587 (2017)
  309. A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate. Polge C, Cabantous S, Deval C, Claustre A, Hauvette A, Bouchenot C, Aniort J, Béchet D, Combaret L, Attaix D, Taillandier D. J Cachexia Sarcopenia Muscle 9 129-145 (2018)
  310. Analysis of electrostatic contributions to the selectivity of interactions between RING-finger domains and ubiquitin-conjugating enzymes. Scheper J, Oliva B, Villà-Freixa J, Villà-Freixa J, Thomson TM. Proteins 74 92-103 (2009)
  311. Cbl-b enhances Runx2 protein stability and augments osteocalcin promoter activity in osteoblastic cell lines. Salingcarnboriboon RA, Pavasant P, Noda M. J. Cell. Physiol. 224 743-747 (2010)
  312. Identification of amino acids essential for the human parainfluenza type 2 virus V protein to lower the intracellular levels of the STAT2. Kozuka Y, Yamashita Y, Kawano M, Tsurudome M, Ito M, Nishio M, Komada H, Ito Y. Virology 317 208-219 (2003)
  313. Interaction of the tail with the catalytic region of a class II E2 conjugating enzyme. Merkley N, Shaw GS. J. Biomol. NMR 26 147-155 (2003)
  314. Investigating the molecular basis of Siah1 and Siah2 E3 ubiquitin ligase substrate specificity. Gopalsamy A, Hagen T, Swaminathan K. PLoS ONE 9 e106547 (2014)
  315. 1H, 13C and 15N resonance assignments for the human E2 conjugating enzyme, UbcH7. Serniwka SA, Shaw GS. Biomol NMR Assign 2 21-23 (2008)
  316. Casitas B-lineage lymphoma linker helix mutations found in myeloproliferative neoplasms affect conformation. Buetow L, Tria G, Ahmed SF, Hock A, Dou H, Sibbet GJ, Svergun DI, Huang DT. BMC Biol. 14 76 (2016)
  317. Cbl E3 Ligase Mediates the Removal of Nectin-1 from the Surface of Herpes Simplex Virus 1-Infected Cells. Deschamps T, Dogrammatzis C, Mullick R, Kalamvoki M. J. Virol. 91 (2017)
  318. Comment Divide and conquer: the E2 active site. Knipscheer P, Sixma TK. Nat. Struct. Mol. Biol. 13 474-476 (2006)
  319. NMR-based insights into the conformational and interaction properties of Arkadia RING-H2 E3 Ub ligase. Chasapis CT, Kandias NG, Episkopou V, Bentrop D, Spyroulias GA. Proteins 80 1484-1489 (2012)
  320. SUMO wrestling with specificity. VanDemark AP, Hill CP. Structure 10 281-282 (2002)
  321. The ubiquitin-associated domain of cellular inhibitor of apoptosis proteins facilitates ubiquitylation. Budhidarmo R, Day CL. J. Biol. Chem. 289 25721-25736 (2014)
  322. 70Z/3 Cbl induces PLC gamma 1 activation in T lymphocytes via an alternate Lat- and Slp-76-independent signaling mechanism. Graham LJ, Verí MC, DeBell KE, Noviello C, Rawat R, Jen S, Bonvini E, Rellahan B. Oncogene 22 2493-2503 (2003)
  323. A General Strategy for Discovery of Inhibitors and Activators of RING and U-box E3 Ligases with Ubiquitin Variants. Gabrielsen M, Buetow L, Nakasone MA, Ahmed SF, Sibbet GJ, Smith BO, Zhang W, Sidhu SS, Huang DT. Mol. Cell 68 456-470.e10 (2017)
  324. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Mukhopadhyay C, Triplett A, Bargar T, Heckman C, Wagner KU, Naramura M. Proc. Natl. Acad. Sci. U.S.A. 113 E8228-E8237 (2016)
  325. Determinants of E2-ubiquitin conjugate recognition by RBR E3 ligases. Martino L, Brown NR, Masino L, Esposito D, Rittinger K. Sci Rep 8 68 (2018)
  326. Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations. Zhen Y, Qin G, Luo C, Jiang H, Yu K, Chen G. PLoS ONE 9 e101663 (2014)
  327. Functional reconstruction of a eukaryotic-like E1/E2/(RING) E3 ubiquitylation cascade from an uncultured archaeon. Hennell James R, Caceres EF, Escasinas A, Alhasan H, Howard JA, Deery MJ, Ettema TJG, Robinson NP. Nat Commun 8 1120 (2017)
  328. Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes. Yu Q, Hu Z, Shen Y, Jiang Y, Pan P, Hou T, Pan ZQ, Huang J, Sun Y. Neoplasia 22 179-191 (2020)
  329. In Vitro Ubiquitination Platform Identifies Methyl Ellipticiniums as Ubiquitin Ligase Inhibitors. Wilson BAP, Voeller D, Smith EA, Wamiru A, Goncharova EI, Liu G, Lipkowitz S, O'Keefe BR. SLAS Discov 26 870-884 (2021)
  330. Plasmodium falciparum XPD translocates in 5' to 3' direction, is expressed throughout the blood stages, and interacts with p44. Tajedin L, Tarique M, Tuteja R. Protoplasma 252 1487-1504 (2015)
  331. Redundancy in B cell developmental pathways: c-Cbl inactivation rescues early B cell development through a B cell linker protein-independent pathway. Song H, Zhang J, Chiang YJ, Siraganian RP, Hodes RJ. J Immunol 178 926-935 (2007)
  332. Role of E2-RING Interactions in Governing RNF4-Mediated Substrate Ubiquitination. DiBello A, Datta AB, Zhang X, Wolberger C. J. Mol. Biol. 428 4639-4650 (2016)
  333. Structural basis for the indispensable role of a unique zinc finger motif in LNX2 ubiquitination. Nayak D, Sivaraman J. Oncotarget 6 34342-34357 (2015)
  334. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms. Stewart MD, Duncan ED, Coronado E, DaRosa PA, Pruneda JN, Brzovic PS, Klevit RE. Protein Sci. 26 475-483 (2017)
  335. UBE2L3, a Partner of MuRF1/TRIM63, Is Involved in the Degradation of Myofibrillar Actin and Myosin. Peris-Moreno D, Malige M, Claustre A, Armani A, Coudy-Gandilhon C, Deval C, Béchet D, Fafournoux P, Sandri M, Combaret L, Taillandier D, Polge C. Cells 10 1974 (2021)
  336. UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation. Nguyen VN, Huang KY, Weng JT, Lai KR, Lee TY. Database (Oxford) 2016 (2016)
  337. Comment (G2)BRinging an E2 to E3. Wang J, Schulman BA. Structure 17 916-917 (2009)
  338. A new scheme to discover functional associations and regulatory networks of E3 ubiquitin ligases. Huang KY, Weng JT, Lee TY, Weng SL. BMC Syst Biol 10 Suppl 1 3 (2016)
  339. Association of a new c-Cbl related protein with the very first stages of apoptosis induction. Corsois L, Quatannens B, Dumont P, Aumercier M, Defresne MP, Régnier DC. Cancer Detect. Prev. 26 93-104 (2002)
  340. Characterization of the mouse Cblc/Cbl3 gene. Fiore F, Ollendorff V, Birnbaum D. Biochem. Biophys. Res. Commun. 280 182-187 (2001)
  341. E3 ligase-inactivation rewires CBL interactome to elicit oncogenesis by hijacking RTK-CBL-CIN85 axis. Ahmed SF, Buetow L, Gabrielsen M, Lilla S, Sibbet GJ, Sumpton D, Zanivan S, Hedley A, Clark W, Huang DT. Oncogene 40 2149-2164 (2021)
  342. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P. BMC Syst Biol 7 24 (2013)
  343. Molecular characterization, 3D model analysis, and expression pattern of the CmUBC gene encoding the melon ubiquitin-conjugating enzyme under drought and salt stress conditions. Baloglu MC, Patir MG. Biochem. Genet. 52 90-105 (2014)
  344. Spred-2 steady-state levels are regulated by phosphorylation and Cbl-mediated ubiquitination. Lock P, I ST, Straffon AF, Schieb H, Hovens CM, Stylli SS. Biochem. Biophys. Res. Commun. 351 1018-1023 (2006)
  345. Structure of the yeast Bre1 RING domain. Kumar P, Kumar P, Wolberger C. Proteins 83 1185-1190 (2015)
  346. Targeting protein ubiquitination for drug discovery. What is in the drug discovery toolbox? Swinney DC. Drug Discov. Today 6 244-250 (2001)
  347. The Arabidopsis Iron-Sulfur Protein GRXS17 is a Target of the Ubiquitin E3 Ligases RGLG3 and RGLG4. Nagels Durand A, Iñigo S, Ritter A, Iniesto E, De Clercq R, Staes A, Van Leene J, Rubio V, Gevaert K, De Jaeger G, Pauwels L, Goossens A. Plant Cell Physiol. 57 1801-1813 (2016)
  348. The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence. Qin J, Zhou X, Sun L, Wang K, Yang F, Liao H, Rong W, Yin J, Chen H, Chen X, Zhang J. New Phytol. 220 219-231 (2018)
  349. A Residue Specific Insight into the Arkadia E3 Ubiquitin Ligase Activity and Conformational Plasticity. Birkou M, Chasapis CT, Marousis KD, Loutsidou AK, Bentrop D, Lelli M, Herrmann T, Carthy JM, Episkopou V, Spyroulias GA. J. Mol. Biol. 429 2373-2386 (2017)
  350. All change: protein conformation and the ubiquitination reaction cascade. Riedinger C, Endicott JA. F1000 Biol Rep 1 19 (2009)
  351. An E3 Ligase Affects the NLR Receptor Stability and Immunity to Powdery Mildew. Wang T, Chang C, Gu C, Tang S, Xie Q, Shen QH. Plant Physiol. 172 2504-2515 (2016)
  352. Artificial RING finger reveals unique auto-ubiquitination with E2 specificity. Miyamoto K, Matsumoto A. Protein Sci 32 e4766 (2023)
  353. Bridging the gap between SCF and ubiquitin transfer. Lima CD. Structure 10 741-742 (2002)
  354. Exon deletions of parkin gene in patients with Parkinson disease. Wang T, Liang Z, Sun S, Cao X, Peng H, Liu H, Tong E. J. Huazhong Univ. Sci. Technol. Med. Sci. 24 262-265 (2004)
  355. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal NHL domain of human TRIM2. Guan X, Li J, Lü X, Dong Y, Chen W, Li X. Acta Crystallogr F Struct Biol Commun 70 673-675 (2014)
  356. In silico analysis identifies a C3HC4-RING finger domain of a putative E3 ubiquitin-protein ligase located at the C-terminus of a polyglutamine-containing protein. Scior T, Luna F, Koch W, Sánchez-Ruiz JF. Braz. J. Med. Biol. Res. 40 293-299 (2007)
  357. Inhibition of cIAP1 as a strategy for targeting c-MYC-driven oncogenic activity. Li H, Fang Y, Niu C, Cao H, Mi T, Zhu H, Yuan J, Zhu J. Proc. Natl. Acad. Sci. U.S.A. 115 E9317-E9324 (2018)
  358. NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco. Ghannam A, Jacques A, de Ruffray P, Kauffmann S. Plant Cell Rep. 35 415-428 (2016)
  359. Polycomb subunit BMI1 determines uterine progesterone responsiveness essential for normal embryo implantation. Xin Q, Kong S, Yan J, Qiu J, He B, Zhou C, Ni Z, Bao H, Huang L, Lu J, Xia G, Liu X, Chen ZJ, Wang C, Wang H. J. Clin. Invest. 128 175-189 (2018)
  360. Solution structure of the PHD finger from the human KIAA1045 protein. Miyamoto K, Yamashita A, Saito K. Protein Sci. 27 987-992 (2018)
  361. Somatic mutations can induce a noninflamed tumour microenvironment via their original gene functions, despite deriving neoantigens. Ishino T, Kawashima S, Tanji E, Ueno T, Ueda Y, Ogasawara S, Sato K, Mano H, Ishihara S, Kato N, Kawazu M, Togashi Y. Br J Cancer 128 1166-1175 (2023)
  362. The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition. Kimani SW, Perveen S, Szewezyk M, Zeng H, Dong A, Li F, Ghiabi P, Li Y, Chau I, Arrowsmith CH, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Halabelian L. Commun Biol 6 1272 (2023)
  363. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure. Miyamoto K, Nakatani A, Saito K. Protein Sci. 26 2451-2457 (2017)
  364. The zinc finger domain of RING finger protein 141 reveals a unique RING fold. Miyamoto K, Uechi A, Saito K. Protein Sci. 26 1681-1686 (2017)
  365. Letter Weak binding to E3 ubiquitin ligase c-Cbl increases EGFRvA protein stability. Song F, Zhou M, Wang B, Shi B, Jiang H, Zhang J, Li Z. FEBS Lett. 590 1345-1353 (2016)
  366. Zinc finger domain of the human DTX protein adopts a unique RING fold. Miyamoto K, Fujiwara Y, Saito K. Protein Sci 28 1151-1156 (2019)
  367. A phospho-tyrosine-based signaling module using SPOP, CSK, and LYN controls TLR-induced IRF activity. Tawaratsumida K, Redecke V, Wu R, Kuriakose J, Bouchard JJ, Mittag T, Lohman BK, Mishra A, High AA, Häcker H. Sci Adv 8 eabq0084 (2022)
  368. Activity-based probe profiling of RNF12 E3 ubiquitin ligase function in Tonne-Kalscheuer syndrome. Bustos F, Mathur S, Espejo-Serrano C, Toth R, Hastie CJ, Virdee S, Findlay GM. Life Sci Alliance 5 e202101248 (2022)
  369. C-Cbl negatively regulates TRAF6-mediated NF-κB activation by promoting K48-linked polyubiquitination of TRAF6. Jang HD, Hwang HZ, Kim HS, Lee SY. Cell. Mol. Biol. Lett. 24 29 (2019)
  370. Casitas B-Lineage Lymphoma RING Domain Inhibitors Protect Mice against High-Fat Diet-Induced Obesity and Insulin Resistance. Wu M, Sun L, Pessetto ZY, Zang Z, Xie X, Zhong L, Su Q, Zan W, Gao X, Zhao Y, Sun Y. PLoS ONE 10 e0135916 (2015)
  371. Cbl interacts with multiple E2s in vitro and in cells. Liyasova MS, Ma K, Voeller D, Ryan PE, Chen J, Klevit RE, Lipkowitz S. PLoS ONE 14 e0216967 (2019)
  372. Discovery of a Novel Benzodiazepine Series of Cbl-b Inhibitors for the Enhancement of Antitumor Immunity. Boerth JA, Chinn AJ, Schimpl M, Bommakanti G, Chan C, Code EL, Giblin KA, Gohlke A, Hansel CS, Jin M, Kavanagh SL, Lamb ML, Lane JS, Larner CJB, Mfuh AM, Moore RK, Puri T, Quinn TR, Ye M, Robbins KJ, Gancedo-Rodrigo M, Tang H, Walsh J, Ware J, Wrigley GL, Reddy IK, Zhang Y, Grimster NP. ACS Med Chem Lett 14 1848-1856 (2023)
  373. E3 ubiquitin ligases LNX1 and LNX2 are major regulators of the presynaptic glycine transporter GlyT2. de la Rocha-Muñoz A, Núñez E, Arribas-González E, López-Corcuera B, Aragón C, de Juan-Sanz J. Sci Rep 9 14944 (2019)
  374. Expression and Comparison of Cbl-b in Lung Squamous Cell Carcinoma and Adenocarcinoma. Li P, Liu H, Zhang Z, Lv X, Wang H, Ma J, Ma Z, Qu X, Teng YE. Med. Sci. Monit. 24 623-635 (2018)
  375. Identification of the ubiquitin-proteasome pathway domain by hyperparameter optimization based on a 2D convolutional neural network. Sikander R, Arif M, Ghulam A, Worachartcheewan A, Thafar MA, Habib S. Front Genet 13 851688 (2022)
  376. Impact of a Single Nucleotide Polymorphism on the 3D Protein Structure and Ubiquitination Activity of E3 Ubiquitin Ligase Arkadia. Birkou M, Raptis V, Marousis KD, Tsevis A, Bourikas K, Bentrop D, Episkopou V, Spyroulias GA. Front Mol Biosci 9 844129 (2022)
  377. Involvement of Ubiquitin-Conjugating Enzyme (E2 Gene Family) in Ripening Process and Response to Cold and Heat Stress of Vitis vinifera. Gao Y, Wang Y, Xin H, Li S, Liang Z. Sci Rep 7 13290 (2017)
  378. Proteome-wide identification and functional analysis of ubiquitinated proteins in peach leaves. Song Y, Shi X, Zou Y, Guo J, Huo N, Chen S, Zhao C, Li H, Wu G, Peng Y. Sci Rep 10 2447 (2020)
  379. RNF130 Regulates LDLR Availability and Plasma LDL Cholesterol Levels. Clifford BL, Jarrett KE, Cheng J, Cheng A, Seldin M, Morand P, Lee R, Chen M, Baldan A, de Aguiar Vallim TQ, Tarling EJ. Circ Res 132 849-863 (2023)
  380. Repertoire of plant RING E3 ubiquitin ligases revisited: New groups counting gene families and single genes. Jiménez-López D, Muñóz-Belman F, González-Prieto JM, Aguilar-Hernández V, Guzmán P. PLoS ONE 13 e0203442 (2018)
  381. Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Mabbitt PD, Loreto A, Déry MA, Fletcher AJ, Stanley M, Pao KC, Wood NT, Coleman MP, Virdee S. Nat Chem Biol 16 1227-1236 (2020)
  382. Synergy between a cytoplasmic vWFA/VIT protein and a WD40-repeat F-box protein controls development in Dictyostelium. Boland AW, Gas-Pascual E, van der Wel H, Kim HW, West CM. Front Cell Dev Biol 11 1259844 (2023)
  383. The Heat Shock Protein 40-Type Chaperone MASH Supports the Endoplasmic Reticulum-Associated Degradation E3 Ubiquitin Ligase MAKIBISHI1 in Medicago truncatula. Erffelinck ML, Ribeiro B, Gryffroy L, Rai A, Pollier J, Goossens A. Front Plant Sci 12 639625 (2021)
  384. The RAG1 Ubiquitin Ligase Domain Stimulates Recombination of TCRβ and TCRα Genes and Influences Development of αβ T Cell Lineages. Burn TN, Miot C, Gordon SM, Culberson EJ, Diamond T, Kreiger PA, Hayer KE, Bhattacharyya A, Jones JM, Bassing CH, Behrens EM. J Immunol 209 938-949 (2022)
  385. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling. Zhou B, Zeng L. Front Plant Sci 9 615 (2018)
  386. The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Oh S, Boo K, Kim J, Baek SA, Jeon Y, You J, Lee H, Choi HJ, Park D, Lee JM, Baek SH. Nucleic Acids Res 48 9037-9052 (2020)
  387. Transcriptome-Wide Analysis and Functional Verification of RING-Type Ubiquitin Ligase Involved in Tea Plant Stress Resistance. Xing D, Li T, Ma G, Ruan H, Gao L, Xia T. Front Plant Sci 12 733287 (2021)
  388. UBE2A and UBE2B are recruited by an atypical E3 ligase module in UBR4. Barnsby-Greer L, Mabbitt PD, Dery MA, Squair DR, Wood NT, Lamoliatte F, Lange SM, Virdee S. Nat Struct Mol Biol (2024)