1exa Citations

Enantiomer discrimination illustrated by high-resolution crystal structures of the human nuclear receptor hRARgamma.

Proc Natl Acad Sci U S A 97 6322-7 (2000)
Cited: 44 times
EuropePMC logo PMID: 10841540

Abstract

The human retinoic acid receptor (hRAR) is a member of the nuclear receptor superfamily that regulates the transcription of target genes in a ligand-dependent manner. The three hRAR isotypes are targets for retinoids that are used in the treatment of various diseases, including breast cancer and skin diseases. Drug efficiency and safety depend on the pharmacological activity of enantiomers, which can differ because of the chiral environment generated by the target. We report the crystal structures of the hRARgamma ligand-binding domain bound to two enantiomers, the active BMS270394 and the inactive BMS270395, solved at 1.6 A and 1.7 A resolution, respectively. The crystal structures reveal that in both enantiomers, the hydroxyl moiety attached to the chiral center forms a hydrogen bond to the Met-272 sulfur atom, thus imposing a conformation of BMS270395 that differs significantly from that observed for BMS270394 and other known retinoids. BMS270395 adopts an energetically unfavorable conformation, accounting for its inactivity; in contrast, the conformation of BMS270394 is close to an energy minimum. Our high-resolution data allow rationalization of enantiomer discrimination by the receptor and provide a model system for the pharmacological properties of enantiomeric pairs.

Articles - 1exa mentioned but not cited (7)

  1. Enantiomer discrimination illustrated by high-resolution crystal structures of the human nuclear receptor hRARgamma. Klaholz BP, Mitschler A, Belema M, Zusi C, Moras D. Proc Natl Acad Sci U S A 97 6322-6327 (2000)
  2. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. Park SJ, Kufareva I, Abagyan R. J Comput Aided Mol Des 24 459-471 (2010)
  3. Systems pharmacology to investigate the interaction of berberine and other drugs in treating polycystic ovary syndrome. Wang Y, Fu X, Xu J, Wang Q, Kuang H. Sci Rep 6 28089 (2016)
  4. Automating crystallographic structure solution and refinement of protein-ligand complexes. Echols N, Moriarty NW, Klei HE, Afonine PV, Bunkóczi G, Headd JJ, McCoy AJ, Oeffner RD, Read RJ, Terwilliger TC, Adams PD. Acta Crystallogr D Biol Crystallogr 70 144-154 (2014)
  5. Preference of small molecules for local minimum conformations when binding to proteins. Wang Q, Pang YP. PLoS One 2 e820 (2007)
  6. Relating the shape of protein binding sites to binding affinity profiles: is there an association? Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoránszky-Kohalmi G, Rauscher AA, Jelinek B, Hári P, Bitter I, Málnási-Csizmadia A, Czobor P. BMC Struct Biol 10 32 (2010)
  7. The protein kinase promiscuities in the cancer-preventive mechanisms of NSAIDs. Norvaisas P, Chan D, Yokoi K, Dave B, Ziemys A. Eur J Cancer Prev 25 77-84 (2016)


Reviews citing this publication (9)

  1. RAR and RXR modulation in cancer and metabolic disease. Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H. Nat Rev Drug Discov 6 793-810 (2007)
  2. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Bourguet W, Germain P, Gronemeyer H. Trends Pharmacol Sci 21 381-388 (2000)
  3. Ligand control of coregulator recruitment to nuclear receptors. Nettles KW, Greene GL. Annu Rev Physiol 67 309-333 (2005)
  4. Design of selective nuclear receptor modulators: RAR and RXR as a case study. de Lera AR, Bourguet W, Altucci L, Gronemeyer H. Nat Rev Drug Discov 6 811-820 (2007)
  5. Binding of ligands and activation of transcription by nuclear receptors. Steinmetz AC, Renaud JP, Moras D. Annu Rev Biophys Biomol Struct 30 329-359 (2001)
  6. Retinoic acid actions through mammalian nuclear receptors. Huang P, Chandra V, Rastinejad F. Chem Rev 114 233-254 (2014)
  7. Ligand-protein interactions in nuclear receptors of hormones. Egea PF, Klaholz BP, Moras D. FEBS Lett 476 62-67 (2000)
  8. Selective retinoids and rexinoids in cancer therapy and chemoprevention. Zusi FC, Lorenzi MV, Vivat-Hannah V. Drug Discov Today 7 1165-1174 (2002)
  9. Different ligands-different receptor conformations: modeling of the hER alpha LBD in complex with agonists and antagonists. Egner U, Heinrich N, Ruff M, Gangloff M, Mueller-Fahrnow A, Wurtz JM. Med Res Rev 21 523-539 (2001)

Articles citing this publication (28)

  1. Retinoic acid receptors: from molecular mechanisms to cancer therapy. di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Mol Aspects Med 41 1-115 (2015)
  2. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Goto S, Kogure K, Abe K, Kimata Y, Kitahama K, Yamashita E, Terada H. Biochim Biophys Acta 1512 251-258 (2001)
  3. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Tocchini-Valentini G, Rochel N, Wurtz JM, Mitschler A, Moras D. Proc Natl Acad Sci U S A 98 5491-5496 (2001)
  4. Molecular recognition of agonist ligands by RXRs. Egea PF, Mitschler A, Moras D. Mol Endocrinol 16 987-997 (2002)
  5. Hormone selectivity in thyroid hormone receptors. Wagner RL, Huber BR, Shiau AK, Kelly A, Cunha Lima ST, Scanlan TS, Apriletti JW, Baxter JD, West BL, Fletterick RJ. Mol Endocrinol 15 398-410 (2001)
  6. Structural basis for isotype selectivity of the human retinoic acid nuclear receptor. Klaholz BP, Mitschler A, Moras D. J Mol Biol 302 155-170 (2000)
  7. Rational design of RAR-selective ligands revealed by RARbeta crystal stucture. Germain P, Kammerer S, Pérez E, Peluso-Iltis C, Tortolani D, Zusi FC, Starrett J, Lapointe P, Daris JP, Marinier A, de Lera AR, Rochel N, Gronemeyer H. EMBO Rep 5 877-882 (2004)
  8. C-H...O hydrogen bonds in the nuclear receptor RARgamma--a potential tool for drug selectivity. Klaholz B, Moras D. Structure 10 1197-1204 (2002)
  9. Crystal structure of the human liver X receptor beta ligand-binding domain in complex with a synthetic agonist. Hoerer S, Schmid A, Heckel A, Budzinski RM, Nar H. J Mol Biol 334 853-861 (2003)
  10. An adamantyl-substituted retinoid-derived molecule that inhibits cancer cell growth and angiogenesis by inducing apoptosis and binds to small heterodimer partner nuclear receptor: effects of modifying its carboxylate group on apoptosis, proliferation, and protein-tyrosine phosphatase activity. Dawson MI, Xia Z, Liu G, Ye M, Fontana JA, Farhana L, Patel BB, Arumugarajah S, Bhuiyan M, Zhang XK, Han YH, Stallcup WB, Fukushi J, Mustelin T, Tautz L, Su Y, Harris DL, Waleh N, Hobbs PD, Jong L, Chao WR, Schiff LJ, Sani BP. J Med Chem 50 2622-2639 (2007)
  11. Ligand-specific structural changes in the vitamin D receptor in solution. Singarapu KK, Zhu J, Tonelli M, Rao H, Assadi-Porter FM, Westler WM, DeLuca HF, Markley JL. Biochemistry 50 11025-11033 (2011)
  12. Synthetic retinoids: structure-activity relationships. Barnard JH, Collings JC, Whiting A, Przyborski SA, Marder TB. Chemistry 15 11430-11442 (2009)
  13. Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of B.cepacia lipase toward 2-methyl-3-phenyl-1-propanol. Mezzetti A, Schrag JD, Cheong CS, Kazlauskas RJ. Chem Biol 12 427-437 (2005)
  14. Stereospecificity of retinol saturase: absolute configuration, synthesis, and biological evaluation of dihydroretinoids. Moise AR, Domínguez M, Alvarez S, Alvarez R, Schupp M, Cristancho AG, Kiser PD, de Lera AR, Lazar MA, Palczewski K. J Am Chem Soc 130 1154-1155 (2008)
  15. Selective Retinoic Acid Receptor γ Agonists Promote Repair of Injured Skeletal Muscle in Mouse. Di Rocco A, Uchibe K, Larmour C, Berger R, Liu M, Barton ER, Iwamoto M. Am J Pathol 185 2495-2504 (2015)
  16. C3 halogen and c8'' substituents on stilbene arotinoids modulate retinoic Acid receptor subtype function. Alvarez S, Khanwalkar H, Alvarez R, Erb C, Martínez C, Rodríguez-Barrios F, Germain P, Gronemeyer H, de Lera AR. ChemMedChem 4 1630-1640 (2009)
  17. Retinoid receptor subtype-selective modulators through synthetic modifications of RARgamma agonists. Alvarez S, Alvarez R, Khanwalkar H, Germain P, Lemaire G, Rodríguez-Barrios F, Gronemeyer H, de Lera AR. Bioorg Med Chem 17 4345-4359 (2009)
  18. Retinoic acid receptor gamma-induced misregulation of chondrogenesis in the murine limb bud in vitro. Galdones E, Hales BF. Toxicol Sci 106 223-232 (2008)
  19. The active site of an enzyme can host both enantiomers of a racemic ligand simultaneously. Mentel M, Blankenfeldt W, Breinbauer R. Angew Chem Int Ed Engl 48 9084-9087 (2009)
  20. Two key proteins of the vitamin D endocrine system come into crystal clear focus: comparison of the X-ray structures of the nuclear receptor for 1alpha,25(OH)2 vitamin D3, the plasma vitamin D binding protein, and their ligands. Mizwicki MT, Norman AW. J Bone Miner Res 18 795-806 (2003)
  21. CONFIRM: connecting fragments found in receptor molecules. Thompson DC, Denny RA, Nilakantan R, Humblet C, Joseph-McCarthy D, Feyfant E. J Comput Aided Mol Des 22 761-772 (2008)
  22. Density functional and docking studies of retinoids for cancer treatment. Silva CH, Almeida P, Taft CA. J Mol Model 10 38-43 (2004)
  23. Mass-spectrometric analysis of agonist-induced retinoic acid receptor gamma conformational change. Peterson VJ, Barofsky E, Deinzer ML, Dawson MI, Feng KC, Zhang XK, Madduru MR, Leid M. Biochem J 362 173-181 (2002)
  24. Dual RXR Agonists and RAR Antagonists Based on the Stilbene Retinoid Scaffold. Martínez C, Lieb M, Alvarez S, Rodríguez-Barrios F, Alvarez R, Khanwalkar H, Gronemeyer H, de Lera AR. ACS Med Chem Lett 5 533-537 (2014)
  25. Structural Elucidation of the Mechanism of Molecular Recognition in Chiral Crystalline Sponges. Zhang SY, Fairen-Jimenez D, Zaworotko MJ. Angew Chem Int Ed Engl 59 17600-17606 (2020)
  26. The study of helical distortions due to environmental changes: choice of parameters. Sreekanth R, Rajan SS. Biophys Chem 125 191-200 (2007)
  27. Modulation of Retinoic Acid Receptor Subtypes by 5- and 8-Substituted (Naphthalen-2-yl)-based Arotinoids. Álvarez S, Lieb M, Martínez C, Khanwalkar H, Rodríguez-Barrios F, Álvarez R, Gronemeyer H, de Lera AR. ChemMedChem 10 1378-1391 (2015)
  28. Structural requirement of RARγ agonism through computational aspects. Liu H, Hu B, Luan J, Sun Y, Wang S, Li W, Chen L, Wang H, Gao Y, Wang J. J Mol Model 29 108 (2023)


Related citations provided by authors (2)

  1. Conformational adaptation of agonists to the human nuclear receptor hRARgamma.. Klaholz BP, Renaud J-P, Mitschler A, Zusi C, Chambon P, Gronemeyer H, Moras D Nat. Struct. Biol. 5 199-202 (1998)
  2. Structural basis for isotype selectivity of the human retinoic acid nuclear receptor.. Klaholz BP, Mitschler A, Moras D To be published - (2000)