1e3g Citations

Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations.

Abstract

The crystal structures of the human androgen receptor (hAR) and human progesterone receptor ligand-binding domains in complex with the same ligand metribolone (R1881) have been determined. Both three-dimensional structures show the typical nuclear receptor fold. The change of two residues in the ligand-binding pocket between the human progesterone receptor and hAR is most likely the source for the specificity of R1881 to the hAR. The structural implications of the 14 known mutations in the ligand-binding pocket of the hAR ligand-binding domains associated with either prostate cancer or the partial or complete androgen receptor insensitivity syndrome were analyzed. The effects of most of these mutants could be explained on the basis of the crystal structure.

Reviews - 1e3g mentioned but not cited (5)

  1. Androgen receptor: structure, role in prostate cancer and drug discovery. Tan MH, Li J, Xu HE, Melcher K, Yong EL. Acta Pharmacol Sin 36 3-23 (2015)
  2. Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Estébanez-Perpiñá E, Bevan CL, McEwan IJ. Cancers (Basel) 13 509 (2021)
  3. Impact of the Protein Data Bank on antineoplastic approvals. Westbrook JD, Soskind R, Hudson BP, Burley SK. Drug Discov Today 25 837-850 (2020)
  4. Melatonin and Vitamins as Protectors against the Reproductive Toxicity of Bisphenols: Which Is the Most Effective? A Systematic Review and Meta-Analysis. Peña-Corona SI, Chávez-Corona JI, Pérez-Caltzontzin LE, Vargas-Estrada D, Mendoza-Rodríguez CA, Ramos-Martínez E, Cerbón-Gutiérrez JL, Herrera-Barragán JA, Quintanar-Guerrero D, Leyva-Gómez G. Int J Mol Sci 24 14930 (2023)
  5. Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Deng T, Xiao Y, Dai Y, Xie L, Li X. Front Mol Biosci 8 743376 (2021)

Articles - 1e3g mentioned but not cited (37)

  1. Recognition and accommodation at the androgen receptor coactivator binding interface. Hur E, Pfaff SJ, Payne ES, Grøn H, Buehrer BM, Fletterick RJ. PLoS Biol 2 E274 (2004)
  2. Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. Pereira de Jésus-Tran K, Côté PL, Cantin L, Blanchet J, Labrie F, Breton R. Protein Sci 15 987-999 (2006)
  3. Identification of SRC3/AIB1 as a preferred coactivator for hormone-activated androgen receptor. Zhou XE, Suino-Powell KM, Li J, He Y, Mackeigan JP, Melcher K, Yong EL, Xu HE. J Biol Chem 285 9161-9171 (2010)
  4. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Acta Pharmacol Sin 30 1694-1708 (2009)
  5. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. Park SJ, Kufareva I, Abagyan R. J Comput Aided Mol Des 24 459-471 (2010)
  6. Diastereomers of the brominated flame retardant 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane induce androgen receptor activation in the hepg2 hepatocellular carcinoma cell line and the lncap prostate cancer cell line. Khalaf H, Larsson A, Berg H, McCrindle R, Arsenault G, Olsson PE. Environ Health Perspect 117 1853-1859 (2009)
  7. Structure Based docking studies towards exploring potential anti-androgen activity of selected phytochemicals against Prostate Cancer. Singh AN, Baruah MM, Sharma N. Sci Rep 7 1955 (2017)
  8. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226. Wang F, Liu XQ, Li H, Liang KN, Miner JN, Hong M, Kallel EA, van Oeveren A, Zhi L, Jiang T. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 1067-1071 (2006)
  9. Cytotoxic T-lymphocyte elicited vaccine against SARS-CoV-2 employing immunoinformatics framework. Kumar N, Kumar N, Admane N, Kumari A, Sood D, Grover S, Prajapati VK, Chandra R, Grover A. Sci Rep 11 7653 (2021)
  10. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells. Qiu JX, Zhou ZW, He ZX, Zhao RJ, Zhang X, Yang L, Zhou SF, Mao ZF. Drug Des Devel Ther 9 349-417 (2015)
  11. In vivo Pharmacokinetic and Anticancer Studies of HH-N25, a Selective Inhibitor of Topoisomerase I, and Hormonal Signaling for Treating Breast Cancer. Lawal B, Kuo YC, Sumitra MR, Wu ATH, Huang HS. J Inflamm Res 14 4901-4913 (2021)
  12. HR-LCMS-Based Metabolite Profiling, Antioxidant, and Anticancer Properties of Teucrium polium L. Methanolic Extract: Computational and In Vitro Study. Noumi E, Snoussi M, Anouar EH, Alreshidi M, Veettil VN, Elkahoui S, Adnan M, Patel M, Kadri A, Aouadi K, De Feo V, Badraoui R. Antioxidants (Basel) 9 E1089 (2020)
  13. Structure-based virtual screening and identification of a novel androgen receptor antagonist. Song CH, Yang SH, Park E, Cho SH, Gong EY, Khadka DB, Cho WJ, Lee K. J Biol Chem 287 30769-30780 (2012)
  14. The helix 1-3 loop in the glucocorticoid receptor LBD is a regulatory element for FKBP cochaperones. Cluning C, Ward BK, Rea SL, Arulpragasam A, Fuller PJ, Ratajczak T. Mol Endocrinol 27 1020-1035 (2013)
  15. Genetics of PCOS: A systematic bioinformatics approach to unveil the proteins responsible for PCOS. Panda PK, Rane R, Ravichandran R, Singh S, Panchal H. Genom Data 8 52-60 (2016)
  16. Molecular insight into the differential anti-androgenic activity of resveratrol and its natural analogs: in silico approach to understand biological actions. Chakraborty S, Kumar A, Butt NA, Zhang L, Williams R, Rimando AM, Biswas PK, Levenson AS. Mol Biosyst 12 1702-1709 (2016)
  17. Deciphering Key Pharmacological Pathways of Qingdai Acting on Chronic Myeloid Leukemia Using a Network Pharmacology-Based Strategy. Li H, Liu L, Liu C, Zhuang J, Zhou C, Yang J, Gao C, Liu G, Lv Q, Sun C. Med Sci Monit 24 5668-5688 (2018)
  18. Identified the Synergistic Mechanism of Drynariae Rhizoma for Treating Fracture Based on Network Pharmacology. Lin H, Wang X, Wang L, Dong H, Huang P, Cai Q, Mo Y, Huang F, Jiang Z. Evid Based Complement Alternat Med 2019 7342635 (2019)
  19. Novel AR/AR-V7 and Mnk1/2 Degrader, VNPP433-3β: Molecular Mechanisms of Action and Efficacy in AR-Overexpressing Castration Resistant Prostate Cancer In Vitro and In Vivo Models. Thomas E, Thankan RS, Purushottamachar P, Huang W, Kane MA, Zhang Y, Ambulos NP, Weber DJ, Njar VCO. Cells 11 2699 (2022)
  20. Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations. Sakkiah S, Kusko R, Pan B, Guo W, Ge W, Tong W, Hong H. Front Pharmacol 9 492 (2018)
  21. Characterization, biological evaluation and molecular docking of mulberry fruit pectin. Kumar RV, Srivastava D, Singh V, Kumar U, Vishvakarma VK, Singh P, Kumar D, Kumar R. Sci Rep 10 21789 (2020)
  22. Cytotoxic T-lymphocyte elicited therapeutic vaccine candidate targeting cancer against MAGE-A11 carcinogenic protein. Kumar N, Kumar N, Sood D, Gupta A, Jha NK, Jain P, Chandra R. Biosci Rep 40 BSR20202349 (2020)
  23. Understanding the polypharmacological anticancer effects of Xiao Chai Hu Tang via a computational pharmacological model. Zheng CS, Wu YS, Bao HJ, Xu XJ, Chen XQ, Ye HZ, Wu GW, Xu HF, Li XH, Chen JS, Liu XX. Exp Ther Med 7 1777-1783 (2014)
  24. Active-Ingredient Screening and Synergistic Action Mechanism of Shegan Mixture for Anti-Asthma Effects Based on Network Pharmacology in a Mouse Model of Asthma. Ye Q, Zhang Q, Yao H, Xu A, Liu Y, Qi J, Zhang H, Zhang J. Drug Des Devel Ther 15 1765-1777 (2021)
  25. Evaluation of Hymenodictyon excelsum Phytochemical's Therapeutic Value Against Prostate Cancer by Molecular Docking Study. Rahman MM. Jundishapur J Nat Pharm Prod 10 e18216 (2015)
  26. Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Chompunud Na Ayudhya C, Graidist P, Tipmanee V. Molecules 27 4194 (2022)
  27. Reciprocal Modulation of Antiretroviral Drug and Steroid Receptor Function In Vitro. Dlamini S, Kuipa M, Enfield K, Skosana S, Woodland JG, Moliki JM, Bick AJ, van der Spuy Z, Maritz MF, Avenant C, Hapgood JP. Antimicrob Agents Chemother 64 e01890-19 (2019)
  28. Evaluation of the toxicological effects of atrazine-metolachlor in male rats: in vivo and in silico studies. Olayinka ET, Ore A, Adewole KE, Oyerinde O. Environ Anal Health Toxicol 37 e2022021-0 (2022)
  29. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors. Dube N, Khan SH, Sasse R, Okafor CD. J Chem Inf Model 63 571-582 (2023)
  30. Paradoxical androgen receptor regulation by small molecule enantiomers. Patsch K, Liu C, Zapotoczny G, Sun Y, Sura H, Ung N, Sun RX, Haliday B, Yu C, Aljehani M, Lee JSH, Kashemirov BA, Agus DB, McKenna CE, Ruderman D. Proc Natl Acad Sci U S A 118 e2100918118 (2021)
  31. A Gly684Ala substitution in the androgen receptor is the cause for azoospermia in a Chinese family with mild androgen insensitivity syndrome and normal hormone levels. Yuan Y, Xu WQ, Chen Y, Luo T, Chen HY. Front Genet 13 988202 (2022)
  32. Anticancer effects of herbal medicines in pancreatic ductal adenocarcinoma through modulation of steroid hormone response proteins. Zhang Z, Wang J, Liu B, Liu Y, Shi X, Li W, Xin H, Xin J, Hao C. Sci Rep 12 9910 (2022)
  33. Based on network pharmacology and molecular docking to predict the mechanism of Huangqi in the treatment of castration-resistant prostate cancer. Lin Z, Zhang Z, Ye X, Zhu M, Li Z, Chen Y, Huang S. PLoS One 17 e0263291 (2022)
  34. Exploring inhibitory components of Hedyotis diffusa on androgen receptor through molecular docking and molecular dynamics simulations. Xiang J, Li Z, Liu Q. Medicine (Baltimore) 102 e36637 (2023)
  35. First In Vivo Insights on the Effects of Tempol-Methoxycinnamate, a New UV Filter, as Alternative to Octyl Methoxycinnamate, on Zebrafish Early Development. Damiani E, Sella F, Astolfi P, Galeazzi R, Carnevali O, Maradonna F. Int J Mol Sci 24 6767 (2023)
  36. Network Pharmacology-Based Strategy to Investigate the Mechanisms of Lenvatinib in the Treatment of Hepatocellular Carcinoma. Liu P, Han B, Zhang Y, Wang X. Comput Intell Neurosci 2022 7102500 (2022)
  37. Letter Urgency of COVID-19 vaccination in adolescents: Androgen and estrogen receptors view. Kazybay B, Ahmad A, Xie Y. Travel Med Infect Dis 47 102306 (2022)


Reviews citing this publication (88)

  1. The development of androgen-independent prostate cancer. Feldman BJ, Feldman D. Nat Rev Cancer 1 34-45 (2001)
  2. Molecular biology of the androgen receptor. Gelmann EP. J Clin Oncol 20 3001-3015 (2002)
  3. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Heemers HV, Tindall DJ. Endocr Rev 28 778-808 (2007)
  4. Chemistry and structural biology of androgen receptor. Gao W, Bohl CE, Dalton JT. Chem Rev 105 3352-3370 (2005)
  5. Alternatively spliced androgen receptor variants. Dehm SM, Tindall DJ. Endocr Relat Cancer 18 R183-96 (2011)
  6. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. Taplin ME, Balk SP. J Cell Biochem 91 483-490 (2004)
  7. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Huang P, Chandra V, Rastinejad F. Annu Rev Physiol 72 247-272 (2010)
  8. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Issa F, Kassiou M, Rendina LM. Chem Rev 111 5701-5722 (2011)
  9. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Oncogene 33 2815-2825 (2014)
  10. Alternative splicing in cancer: implications for biology and therapy. Chen J, Weiss WA. Oncogene 34 1-14 (2015)
  11. Androgen insensitivity syndrome. Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J. Lancet 380 1419-1428 (2012)
  12. Nuclear receptor structure: implications for function. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Annu Rev Physiol 69 201-220 (2007)
  13. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. di Masi A, De Marinis E, Ascenzi P, Marino M. Mol Aspects Med 30 297-343 (2009)
  14. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Int J Cancer 120 719-733 (2007)
  15. Molecular basis of androgen insensitivity. Brinkmann AO. Mol Cell Endocrinol 179 105-109 (2001)
  16. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A. Nucl Recept Signal 6 e008 (2008)
  17. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Lavery DN, McEwan IJ. Biochem J 391 449-464 (2005)
  18. Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). Gao W, Dalton JT. Drug Discov Today 12 241-248 (2007)
  19. Cadmium--a metallohormone? Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Toxicol Appl Pharmacol 238 266-271 (2009)
  20. The nuclear receptor superfamily and drug discovery. Moore JT, Collins JL, Pearce KH. ChemMedChem 1 504-523 (2006)
  21. The contribution of different androgen receptor domains to receptor dimerization and signaling. Centenera MM, Harris JM, Tilley WD, Butler LM. Mol Endocrinol 22 2373-2382 (2008)
  22. Androgen resistance. Hughes IA, Deeb A. Best Pract Res Clin Endocrinol Metab 20 577-598 (2006)
  23. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer. Chatterjee B. Mol Cell Biochem 253 89-101 (2003)
  24. Mechanism of androgen receptor action. Li J, Al-Azzawi F. Maturitas 63 142-148 (2009)
  25. Molecular action of androgens. Gobinet J, Poujol N, Sultan Ch. Mol Cell Endocrinol 198 15-24 (2002)
  26. Minireview: sex differentiation. Hughes IA. Endocrinology 142 3281-3287 (2001)
  27. Phenotypic heterogeneity of mutations in androgen receptor gene. Rajender S, Singh L, Thangaraj K. Asian J Androl 9 147-179 (2007)
  28. Selective androgen receptor modulators in preclinical and clinical development. Narayanan R, Mohler ML, Bohl CE, Miller DD, Dalton JT. Nucl Recept Signal 6 e010 (2008)
  29. Structural Features of Tight-Junction Proteins. Heinemann U, Schuetz A. Int J Mol Sci 20 E6020 (2019)
  30. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure. Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, Georgakopoulos C. Steroids 74 172-197 (2009)
  31. AR function in promoting metastatic prostate cancer. Augello MA, Den RB, Knudsen KE. Cancer Metastasis Rev 33 399-411 (2014)
  32. Androgen receptor-cofactor interactions as targets for new drug discovery. Chang CY, McDonnell DP. Trends Pharmacol Sci 26 225-228 (2005)
  33. Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. Roy AK, Tyagi RK, Song CS, Lavrovsky Y, Ahn SC, Oh TS, Chatterjee B. Ann N Y Acad Sci 949 44-57 (2001)
  34. Intrinsic disorder in the androgen receptor: identification, characterisation and drugability. McEwan IJ. Mol Biosyst 8 82-90 (2012)
  35. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Andrade CH, Silva FP. Front Chem 8 93 (2020)
  36. Structural analyses of sex hormone-binding globulin reveal novel ligands and function. Avvakumov GV, Cherkasov A, Muller YA, Hammond GL. Mol Cell Endocrinol 316 13-23 (2010)
  37. Antiandrogens: selective androgen receptor modulators. Berrevoets CA, Umar A, Brinkmann AO. Mol Cell Endocrinol 198 97-103 (2002)
  38. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Caboni L, Lloyd DG. Med Res Rev 33 1081-1118 (2013)
  39. Structure-function relationships of vitamin D including ligand recognition by the vitamin D receptor. Yamada S, Shimizu M, Yamamoto K. Med Res Rev 23 89-115 (2003)
  40. Recent developments in antiandrogens and selective androgen receptor modulators. Haendler B, Cleve A. Mol Cell Endocrinol 352 79-91 (2012)
  41. Molecular biology of androgen insensitivity. Jääskeläinen J. Mol Cell Endocrinol 352 4-12 (2012)
  42. Switching and withdrawing hormonal agents for castration-resistant prostate cancer. Lorente D, Mateo J, Zafeiriou Z, Smith AD, Sandhu S, Ferraldeschi R, de Bono JS. Nat Rev Urol 12 37-47 (2015)
  43. The genetics of male undermasculinization. Ahmed SF, Hughes IA. Clin Endocrinol (Oxf) 56 1-18 (2002)
  44. Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor. Hong H, Fang H, Xie Q, Perkins R, Sheehan DM, Tong W. SAR QSAR Environ Res 14 373-388 (2003)
  45. Structural and functional relationships of the steroid hormone receptors' N-terminal transactivation domain. Kumar R, Litwack G. Steroids 74 877-883 (2009)
  46. Complexities of androgen action. McPhaul MJ, Young M. J Am Acad Dermatol 45 S87-94 (2001)
  47. The evolution of progesterone receptor ligands. Madauss KP, Stewart EL, Williams SP. Med Res Rev 27 374-400 (2007)
  48. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer. Narayanan R, Dalton JT. Cancers (Basel) 8 E108 (2016)
  49. Androgen receptor and caveolin-1 in prostate cancer. Bennett N, Hooper JD, Lee CS, Gobe GC. IUBMB Life 61 961-970 (2009)
  50. Androgen receptor gene rearrangements: new perspectives on prostate cancer progression. Brand LJ, Dehm SM. Curr Drug Targets 14 441-449 (2013)
  51. Androgen receptor as a therapeutic target. Gao W. Adv Drug Deliv Rev 62 1277-1284 (2010)
  52. Therapeutic Perspectives on the Modulation of G-Protein Coupled Estrogen Receptor, GPER, Function. Rouhimoghadam M, Lu AS, Salem AK, Filardo EJ. Front Endocrinol (Lausanne) 11 591217 (2020)
  53. Androgen insensitivity syndrome. Tadokoro-Cuccaro R, Hughes IA. Curr Opin Endocrinol Diabetes Obes 21 499-503 (2014)
  54. Different Clinical Presentations and Management in Complete Androgen Insensitivity Syndrome (CAIS). Lanciotti L, Cofini M, Leonardi A, Bertozzi M, Penta L, Esposito S. Int J Environ Res Public Health 16 E1268 (2019)
  55. Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Sadar MD. Expert Opin Drug Discov 15 551-560 (2020)
  56. Androgen receptor and soy isoflavones in prostate cancer. Sivoňová MK, Kaplán P, Tatarková Z, Lichardusová L, Dušenka R, Jurečeková J. Mol Clin Oncol 10 191-204 (2019)
  57. Sex, infertility and the molecular biology of the androgen receptor. Loy CJ, Yong EL. Curr Opin Obstet Gynecol 13 315-321 (2001)
  58. Structure of the glucocorticoid receptor, a flexible protein that can adapt to different ligands. Veleiro AS, Alvarez LD, Eduardo SL, Burton G. ChemMedChem 5 649-659 (2010)
  59. Developmental aspects of androgen action. Hughes IA, Lim HN, Martin H, Mongan NP, Dovey L, Ahmed SF, Hawkins JR. Mol Cell Endocrinol 185 33-41 (2001)
  60. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. Cold Spring Harb Perspect Med 8 a030478 (2018)
  61. Different ligands-different receptor conformations: modeling of the hER alpha LBD in complex with agonists and antagonists. Egner U, Heinrich N, Ruff M, Gangloff M, Mueller-Fahrnow A, Wurtz JM. Med Res Rev 21 523-539 (2001)
  62. Mechanisms of disease: Polymorphisms of androgen regulatory genes in the development of prostate cancer. Singh AS, Chau CH, Price DK, Figg WD. Nat Clin Pract Urol 2 101-107 (2005)
  63. Mechanisms of prostate cancer progression to androgen independence. McPhaul MJ. Best Pract Res Clin Endocrinol Metab 22 373-388 (2008)
  64. The emergence of resistance to targeted cancer therapeutics. Mellinghoff IK, Sawyers CL. Pharmacogenomics 3 603-623 (2002)
  65. From gene to therapy in spinal and bulbar muscular atrophy: Are we there yet? Pennuto M, Rinaldi C. Mol Cell Endocrinol 465 113-121 (2018)
  66. Current status of androgen receptor-splice variant 7 inhibitor niclosamide in castrate-resistant prostate-cancer. Sobhani N, Generali D, D'Angelo A, Aieta M, Roviello G. Invest New Drugs 36 1133-1137 (2018)
  67. Molecular mechanisms of prostate cancer. Trapman J. Eur J Cancer 37 Suppl 7 S119-25 (2001)
  68. Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery. Sakkiah S, Ng HW, Tong W, Hong H. Expert Opin Ther Targets 20 1267-1282 (2016)
  69. Targeting the androgen receptor with steroid conjugates. Levine PM, Garabedian MJ, Kirshenbaum K. J Med Chem 57 8224-8237 (2014)
  70. Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM. J Biol Chem 296 100240 (2021)
  71. Androgen-selective gene regulation in the prostate. Haendler B. Biomed Pharmacother 56 78-83 (2002)
  72. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus. Sakkiah S, Wang T, Zou W, Wang Y, Pan B, Tong W, Hong H. Int J Environ Res Public Health 15 E25 (2017)
  73. Molecular pathogenesis of spinal and bulbar muscular atrophy. Merry DE. Brain Res Bull 56 203-207 (2001)
  74. The significance of the 20-carbonyl group of progesterone in steroid receptor binding: a molecular dynamics and structure-based ligand design study. Hillisch A, von Langen J, Menzenbach B, Droescher P, Kaufmann G, Schneider B, Elger W. Steroids 68 869-878 (2003)
  75. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer. Narayanan R. Asian J Urol 7 271-283 (2020)
  76. The role of cofactors in sex steroid action. Trapman J, Dubbink HJ. Best Pract Res Clin Endocrinol Metab 21 403-414 (2007)
  77. 46,XY disorders of sex development--the undermasculinised male with disorders of androgen action. Werner R, Grötsch H, Hiort O. Best Pract Res Clin Endocrinol Metab 24 263-277 (2010)
  78. Effects of chromosomal sex and hormonal influences on shaping sex differences in brain and behavior: Lessons from cases of disorders of sex development. Bramble MS, Lipson A, Vashist N, Vilain E. J Neurosci Res 95 65-74 (2017)
  79. Androgen and estrogen receptors: potential of crystallography in the fight against cancer. Nahoum V, Bourguet W. Int J Biochem Cell Biol 39 1280-1287 (2007)
  80. Androgen receptor modulators: a marriage of chemistry and biology. McEwan IJ. Future Med Chem 5 1109-1120 (2013)
  81. Helix 3-helix 5 interactions in steroid hormone receptor function. Zhang J, Geller DS. J Steroid Biochem Mol Biol 109 279-285 (2008)
  82. Concepts and Updates in the Evaluation and Diagnosis of Common Disorders of Sexual Development. Rawal AY, Austin PF. Curr Urol Rep 16 83 (2015)
  83. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells. Pathak R, Philizaire M, Mujtaba S. Cancers (Basel) 7 1622-1642 (2015)
  84. What Does Androgen Receptor Signaling Pathway in Sertoli Cells During Normal Spermatogenesis Tell Us? Wang JM, Li ZF, Yang WX. Front Endocrinol (Lausanne) 13 838858 (2022)
  85. [Myoanabolic steroids and selective androgen receptor modulators: mechanism of action and perspectives]. Tóth M. Orv Hetil 150 2051-2059 (2009)
  86. Androgen Receptor in Hormone Receptor-Positive Breast Cancer. Khan AF, Karami S, Peidl AS, Waiters KD, Babajide MF, Bawa-Khalfe T. Int J Mol Sci 25 476 (2023)
  87. Androgen receptor nucleocytoplasmic trafficking - A one-way journey. Cole RN, Fang Q, Wang Z. Mol Cell Endocrinol 576 112009 (2023)
  88. Androgen signalling in the ovaries and endometrium. Lissaman AC, Girling JE, Cree LM, Campbell RE, Ponnampalam AP. Mol Hum Reprod 29 gaad017 (2023)

Articles citing this publication (178)

  1. Molecular determinants of resistance to antiandrogen therapy. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL. Nat Med 10 33-39 (2004)
  2. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Cancer Res 68 5469-5477 (2008)
  3. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE. Cell 110 93-105 (2002)
  4. Formation of the androgen receptor transcription complex. Shang Y, Myers M, Brown M. Mol Cell 9 601-610 (2002)
  5. The androgen receptor gene mutations database: 2012 update. Gottlieb B, Beitel LK, Nadarajah A, Paliouras M, Trifiro M. Hum Mutat 33 887-894 (2012)
  6. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J, Stadler W, Hayes DF, Kantoff PW, Vogelzang NJ, Small EJ, Cancer and Leukemia Group B Study 9663. J Clin Oncol 21 2673-2678 (2003)
  7. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Sack JS, Kish KF, Wang C, Attar RM, Kiefer SE, An Y, Wu GY, Scheffler JE, Salvati ME, Krystek SR, Weinmann R, Einspahr HM. Proc Natl Acad Sci U S A 98 4904-4909 (2001)
  8. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Proc Natl Acad Sci U S A 102 6201-6206 (2005)
  9. Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Wisely GB, Miller AB, Davis RG, Thornquest AD, Johnson R, Spitzer T, Sefler A, Shearer B, Moore JT, Miller AB, Willson TM, Williams SP. Structure 10 1225-1234 (2002)
  10. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Chen Y, Clegg NJ, Scher HI. Lancet Oncol 10 981-991 (2009)
  11. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. Kauppi B, Jakob C, Färnegårdh M, Yang J, Ahola H, Alarcon M, Calles K, Engström O, Harlan J, Muchmore S, Ramqvist AK, Thorell S, Ohman L, Greer J, Gustafsson JA, Carlstedt-Duke J, Carlquist M. J Biol Chem 278 22748-22754 (2003)
  12. The androgen receptor gene mutations database (ARDB): 2004 update. Gottlieb B, Beitel LK, Wu JH, Trifiro M. Hum Mutat 23 527-533 (2004)
  13. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. He B, Gampe RT, Kole AJ, Hnat AT, Stanley TB, An G, Stewart EL, Kalman RI, Minges JT, Wilson EM. Mol Cell 16 425-438 (2004)
  14. Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR. J Mol Biol 331 815-828 (2003)
  15. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. He B, Minges JT, Lee LW, Wilson EM. J Biol Chem 277 10226-10235 (2002)
  16. Mutation of the androgen receptor causes oncogenic transformation of the prostate. Han G, Buchanan G, Ittmann M, Harris JM, Yu X, Demayo FJ, Tilley W, Greenberg NM. Proc Natl Acad Sci U S A 102 1151-1156 (2005)
  17. Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Xin L, Teitell MA, Lawson DA, Kwon A, Mellinghoff IK, Witte ON. Proc Natl Acad Sci U S A 103 7789-7794 (2006)
  18. Beta-catenin binds to the activation function 2 region of the androgen receptor and modulates the effects of the N-terminal domain and TIF2 on ligand-dependent transcription. Song LN, Herrell R, Byers S, Shah S, Wilson EM, Gelmann EP. Mol Cell Biol 23 1674-1687 (2003)
  19. Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. Askew EB, Gampe RT, Stanley TB, Faggart JL, Wilson EM. J Biol Chem 282 25801-25816 (2007)
  20. The role of androgen receptor mutations in prostate cancer progression. Brooke GN, Bevan CL. Curr Genomics 10 18-25 (2009)
  21. Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. Fu M, Wang C, Wang J, Zhang X, Sakamaki T, Yeung YG, Chang C, Hopp T, Fuqua SA, Jaffray E, Hay RT, Palvimo JJ, Jänne OA, Pestell RG. Mol Cell Biol 22 3373-3388 (2002)
  22. Structure-activity relationship for thiohydantoin androgen receptor antagonists for castration-resistant prostate cancer (CRPC). Jung ME, Ouk S, Yoo D, Sawyers CL, Chen C, Tran C, Wongvipat J. J Med Chem 53 2779-2796 (2010)
  23. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. Bohl CE, Miller DD, Chen J, Bell CE, Dalton JT. J Biol Chem 280 37747-37754 (2005)
  24. Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Li Y, Suino K, Daugherty J, Xu HE. Mol Cell 19 367-380 (2005)
  25. Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX-1. Holter E, Kotaja N, Mäkela S, Strauss L, Kietz S, Jänne OA, Gustafsson JA, Palvimo JJ, Treuter E. Mol Endocrinol 16 515-528 (2002)
  26. ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cato L, de Tribolet-Hardy J, Lee I, Rottenberg JT, Coleman I, Melchers D, Houtman R, Xiao T, Li W, Uo T, Sun S, Kuznik NC, Göppert B, Ozgun F, van Royen ME, Houtsmuller AB, Vadhi R, Rao PK, Li L, Balk SP, Den RB, Trock BJ, Karnes RJ, Jenkins RB, Klein EA, Davicioni E, Gruhl FJ, Long HW, Liu XS, Cato ACB, Lack NA, Nelson PS, Plymate SR, Groner AC, Brown M. Cancer Cell 35 401-413.e6 (2019)
  27. Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Steketee K, Timmerman L, Ziel-van der Made AC, Doesburg P, Brinkmann AO, Trapman J. Int J Cancer 100 309-317 (2002)
  28. Androgen-induced NH2- and COOH-terminal Interaction Inhibits p160 coactivator recruitment by activation function 2. He B, Bowen NT, Minges JT, Wilson EM. J Biol Chem 276 42293-42301 (2001)
  29. Role of cadmium in the regulation of AR gene expression and activity. Martin MB, Voeller HJ, Gelmann EP, Lu J, Stoica EG, Hebert EJ, Reiter R, Singh B, Danielsen M, Pentecost E, Stoica A. Endocrinology 143 263-275 (2002)
  30. Doubling the size of the glucocorticoid receptor ligand binding pocket by deacylcortivazol. Suino-Powell K, Xu Y, Zhang C, Tao YG, Tolbert WD, Simons SS, Xu HE. Mol Cell Biol 28 1915-1923 (2008)
  31. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. Dehm SM, Tindall DJ. J Biol Chem 281 27882-27893 (2006)
  32. Structure of the homodimeric androgen receptor ligand-binding domain. Nadal M, Prekovic S, Gallastegui N, Helsen C, Abella M, Zielinska K, Gay M, Vilaseca M, Taulès M, Houtsmuller AB, van Royen ME, Claessens F, Fuentes-Prior P, Estébanez-Perpiñá E. Nat Commun 8 14388 (2017)
  33. Crystal structure of the T877A human androgen receptor ligand-binding domain complexed to cyproterone acetate provides insight for ligand-induced conformational changes and structure-based drug design. Bohl CE, Wu Z, Miller DD, Bell CE, Dalton JT. J Biol Chem 282 13648-13655 (2007)
  34. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Duff J, McEwan IJ. Mol Endocrinol 19 2943-2954 (2005)
  35. Androgen receptor gene mutation, rearrangement, polymorphism. Eisermann K, Wang D, Jing Y, Pascal LE, Wang Z. Transl Androl Urol 2 137-147 (2013)
  36. Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs. He B, Wilson EM. Mol Cell Biol 23 2135-2150 (2003)
  37. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor. Yin D, He Y, Perera MA, Hong SS, Marhefka C, Stourman N, Kirkovsky L, Miller DD, Dalton JT. Mol Pharmacol 63 211-223 (2003)
  38. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O'Malley BW. Mol Cell 79 812-823.e4 (2020)
  39. Crystal structure of a mutant mineralocorticoid receptor responsible for hypertension. Fagart J, Huyet J, Pinon GM, Rochel M, Mayer C, Rafestin-Oblin ME. Nat Struct Mol Biol 12 554-555 (2005)
  40. Mechanisms of androgen receptor activation in advanced prostate cancer: differential co-activator recruitment and gene expression. Brooke GN, Parker MG, Bevan CL. Oncogene 27 2941-2950 (2008)
  41. A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor. Bohl CE, Chang C, Mohler ML, Chen J, Miller DD, Swaan PW, Dalton JT. J Med Chem 47 3765-3776 (2004)
  42. Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Bisson WH, Cheltsov AV, Bruey-Sedano N, Lin B, Chen J, Goldberger N, May LT, Christopoulos A, Dalton JT, Sexton PM, Zhang XK, Abagyan R. Proc Natl Acad Sci U S A 104 11927-11932 (2007)
  43. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? Douard V, Brunet F, Boussau B, Ahrens-Fath I, Vlaeminck-Guillem V, Haendler B, Laudet V, Guiguen Y. BMC Evol Biol 8 336 (2008)
  44. Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1. Naftalin RJ, Afzal I, Cunningham P, Halai M, Ross C, Salleh N, Milligan SR. Br J Pharmacol 140 487-499 (2003)
  45. Interdomain interactions in the mineralocorticoid receptor. Rogerson FM, Fuller PJ. Mol Cell Endocrinol 200 45-55 (2003)
  46. Development of an androgen reporter gene assay (AR-LUX) utilizing a human cell line with an endogenously regulated androgen receptor. Blankvoort BM, de Groene EM, van Meeteren-Kreikamp AP, Witkamp RF, Rodenburg RJ, Aarts JM. Anal Biochem 298 93-102 (2001)
  47. Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety. Ishioka T, Kubo A, Koiso Y, Nagasawa K, Itai A, Hashimoto Y. Bioorg Med Chem 10 1555-1566 (2002)
  48. A glucocorticoid-responsive mutant androgen receptor exhibits unique ligand specificity: therapeutic implications for androgen-independent prostate cancer. Krishnan AV, Zhao XY, Swami S, Brive L, Peehl DM, Ely KR, Feldman D. Endocrinology 143 1889-1900 (2002)
  49. Differential presentation of protein interaction surfaces on the androgen receptor defines the pharmacological actions of bound ligands. Norris JD, Joseph JD, Sherk AB, Juzumiene D, Turnbull PS, Rafferty SW, Cui H, Anderson E, Fan D, Dye DA, Deng X, Kazmin D, Chang CY, Willson TM, McDonnell DP. Chem Biol 16 452-460 (2009)
  50. Evidence for DNA-binding domain--ligand-binding domain communications in the androgen receptor. Helsen C, Dubois V, Verfaillie A, Young J, Trekels M, Vancraenenbroeck R, De Maeyer M, Claessens F. Mol Cell Biol 32 3033-3043 (2012)
  51. Mechanism of androgen receptor antagonism by bicalutamide in the treatment of prostate cancer. Osguthorpe DJ, Hagler AT. Biochemistry 50 4105-4113 (2011)
  52. Molecular and pharmacological properties of a potent and selective novel nonsteroidal progesterone receptor agonist tanaproget. Zhang Z, Olland AM, Zhu Y, Cohen J, Berrodin T, Chippari S, Appavu C, Li S, Wilhem J, Chopra R, Fensome A, Zhang P, Wrobel J, Unwalla RJ, Lyttle CR, Winneker RC. J Biol Chem 280 28468-28475 (2005)
  53. An androgen receptor mutation in the MDA-MB-453 cell line model of molecular apocrine breast cancer compromises receptor activity. Moore NL, Buchanan G, Harris JM, Selth LA, Bianco-Miotto T, Hanson AR, Birrell SN, Butler LM, Hickey TE, Tilley WD. Endocr Relat Cancer 19 599-613 (2012)
  54. Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Eftekharzadeh B, Banduseela VC, Chiesa G, Martínez-Cristóbal P, Rauch JN, Nath SR, Schwarz DMC, Shao H, Marin-Argany M, Di Sanza C, Giorgetti E, Yu Z, Pierattelli R, Felli IC, Brun-Heath I, García J, Nebreda ÁR, Gestwicki JE, Lieberman AP, Salvatella X. Nat Commun 10 3562 (2019)
  55. Structural basis for androgen receptor agonists and antagonists: interaction of SPEED 98-listed chemicals and related compounds with the androgen receptor based on an in vitro reporter gene assay and 3D-QSAR. Tamura H, Ishimoto Y, Fujikawa T, Aoyama H, Yoshikawa H, Akamatsu M. Bioorg Med Chem 14 7160-7174 (2006)
  56. Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Hodgson MC, Shen HC, Hollenberg AN, Balk SP. Mol Cancer Ther 7 3187-3194 (2008)
  57. Stabilization of androgen receptor protein is induced by agonist, not by antagonists. Furutani T, Watanabe T, Tanimoto K, Hashimoto T, Koutoku H, Kudoh M, Shimizu Y, Kato S, Shikama H. Biochem Biophys Res Commun 294 779-784 (2002)
  58. Systematic structure-function analysis of androgen receptor Leu701 mutants explains the properties of the prostate cancer mutant L701H. van de Wijngaart DJ, Molier M, Lusher SJ, Hersmus R, Jenster G, Trapman J, Dubbink HJ. J Biol Chem 285 5097-5105 (2010)
  59. Allosteric conversation in the androgen receptor ligand-binding domain surfaces. Grosdidier S, Carbó LR, Buzón V, Brooke G, Nguyen P, Baxter JD, Bevan C, Webb P, Estébanez-Perpiñá E, Fernández-Recio J. Mol Endocrinol 26 1078-1090 (2012)
  60. Anabolic steroids, testosterone-precursors and virilizing androgens induce distinct activation profiles of androgen responsive promoter constructs. Holterhus PM, Piefke S, Hiort O. J Steroid Biochem Mol Biol 82 269-275 (2002)
  61. Partial androgen insensitivity with phenotypic variation caused by androgen receptor mutations that disrupt activation function 2 and the NH(2)- and carboxyl-terminal interaction. Quigley CA, Tan JA, He B, Zhou ZX, Mebarki F, Morel Y, Forest MG, Chatelain P, Ritzén EM, French FS, Wilson EM. Mech Ageing Dev 125 683-695 (2004)
  62. Molecular processes leading to aberrant androgen receptor signaling and castration resistance in prostate cancer. Hu R, Denmeade SR, Luo J. Expert Rev Endocrinol Metab 5 753-764 (2010)
  63. Androgen receptor mutants detected in recurrent prostate cancer exhibit diverse functional characteristics. Chen G, Wang X, Zhang S, Lu Y, Sun Y, Zhang J, Li Z, Lu J. Prostate 63 395-406 (2005)
  64. Interaction of organophosphate pesticides and related compounds with the androgen receptor. Tamura H, Yoshikawa H, Gaido KW, Ross SM, DeLisle RK, Welsh WJ, Richard AM. Environ Health Perspect 111 545-552 (2003)
  65. PC-3 cells with enhanced androgen receptor signaling: a model for clonal selection in prostate cancer. Buchanan G, Craft PS, Yang M, Cheong A, Prescott J, Jia L, Coetzee GA, Tilley WD. Prostate 60 352-366 (2004)
  66. A new class of androgen receptor antagonists bearing carborane in place of a steroidal skeleton. Fujii S, Hashimoto Y, Suzuki T, Ohta S, Endo Y. Bioorg Med Chem Lett 15 227-230 (2005)
  67. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors. Baker ME, Chandsawangbhuwana C, Ollikainen N. BMC Evol Biol 7 24 (2007)
  68. Unique bisphenol A transcriptome in prostate cancer: novel effects on ERbeta expression that correspond to androgen receptor mutation status. Hess-Wilson JK, Webb SL, Daly HK, Leung YK, Boldison J, Comstock CE, Sartor MA, Ho SM, Knudsen KE. Environ Health Perspect 115 1646-1653 (2007)
  69. Regulation of the structurally dynamic N-terminal domain of progesterone receptor by protein-induced folding. Kumar R, Moure CM, Khan SH, Callaway C, Grimm SL, Goswami D, Griffin PR, Edwards DP. J Biol Chem 288 30285-30299 (2013)
  70. An androgenic steroid delivery vector that imparts activity to a non-conventional platinum(II) metallo-drug. Huxley M, Sanchez-Cano C, Browning MJ, Navarro-Ranninger C, Quiroga AG, Rodger A, Hannon MJ. Dalton Trans 39 11353-11364 (2010)
  71. 11beta-hydroxyprogesterone acts as a mineralocorticoid agonist in stimulating Na+ absorption in mammalian principal cortical collecting duct cells. Rafestin-Oblin ME, Fagart J, Souque A, Seguin C, Bens M, Vandewalle A. Mol Pharmacol 62 1306-1313 (2002)
  72. Androgen receptor signalling in prostate cancer: the functional consequences of acetylation. Lavery DN, Bevan CL. J Biomed Biotechnol 2011 862125 (2011)
  73. Design and synthesis of novel androgen receptor antagonists with sterically bulky icosahedral carboranes. Goto T, Ohta K, Suzuki T, Ohta S, Endo Y. Bioorg Med Chem 13 6414-6424 (2005)
  74. A fluorescent indicator to visualize activities of the androgen receptor ligands in single living cells. Awais M, Sato M, Lee X, Umezawa Y. Angew Chem Int Ed Engl 45 2707-2712 (2006)
  75. Met909 plays a key role in the activation of the progesterone receptor and also in the high potency of 13-ethyl progestins. Petit-Topin I, Turque N, Fagart J, Fay M, Ulmann A, Gainer E, Rafestin-Oblin ME. Mol Pharmacol 75 1317-1324 (2009)
  76. Nestorone® as a Novel Progestin for Nonoral Contraception: Structure-Activity Relationships and Brain Metabolism Studies. Kumar N, Fagart J, Liere P, Mitchell SJ, Knibb AR, Petit-Topin I, Rame M, El-Etr M, Schumacher M, Lambert JJ, Rafestin-Oblin ME, Sitruk-Ware R. Endocrinology 158 170-182 (2017)
  77. Polymorphisms and HNPCC: PMS2-MLH1 protein interactions diminished by single nucleotide polymorphisms. Yuan ZQ, Gottlieb B, Beitel LK, Wong N, Gordon PH, Wang Q, Puisieux A, Foulkes WD, Trifiro M. Hum Mutat 19 108-113 (2002)
  78. New naturally occurring missense mutations of the human mineralocorticoid receptor disclose important residues involved in dynamic interactions with deoxyribonucleic acid, intracellular trafficking, and ligand binding. Sartorato P, Cluzeaud F, Fagart J, Viengchareun S, Lombès M, Zennaro MC. Mol Endocrinol 18 2151-2165 (2004)
  79. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids. Lusher SJ, Raaijmakers HC, Vu-Pham D, Kazemier B, Bosch R, McGuire R, Azevedo R, Hamersma H, Dechering K, Oubrie A, van Duin M, de Vlieg J. J Biol Chem 287 20333-20343 (2012)
  80. A new highly androgen specific yeast biosensor, enabling optimisation of (Q)SAR model approaches. Bovee TF, Lommerse JP, Peijnenburg AA, Fernandes EA, Nielen MW. J Steroid Biochem Mol Biol 108 121-131 (2008)
  81. Androgen receptor mutations associated with androgen insensitivity syndrome: a high content analysis approach leading to personalized medicine. Szafran AT, Hartig S, Sun H, Uray IP, Szwarc M, Shen Y, Mediwala SN, Bell J, McPhaul MJ, Mancini MA, Marcelli M. PLoS One 4 e8179 (2009)
  82. Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells. Abdelbaqi K, Lack N, Guns ET, Kotha L, Safe S, Sanderson JT. Prostate 71 1401-1412 (2011)
  83. Molecular basis of agonicity and antagonicity in the androgen receptor studied by molecular dynamics simulations. Bisson WH, Abagyan R, Cavasotto CN. J Mol Graph Model 27 452-458 (2008)
  84. Molecular determinants of the recognition of ulipristal acetate by oxo-steroid receptors. Petit-Topin I, Fay M, Resche-Rigon M, Ulmann A, Gainer E, Rafestin-Oblin ME, Fagart J. J Steroid Biochem Mol Biol 144 Pt B 427-435 (2014)
  85. Selective regulation of gene expression by an orthogonal estrogen receptor-ligand pair created by polar-group exchange. Shi Y, Koh JT. Chem Biol 8 501-510 (2001)
  86. A high-throughput ligand competition binding assay for the androgen receptor and other nuclear receptors. Féau C, Arnold LA, Kosinski A, Guy RK. J Biomol Screen 14 43-48 (2009)
  87. Acidic heterocycles as novel hydrophilic pharmacophore of androgen receptor ligands with a carborane core structure. Fujii S, Ohta K, Goto T, Kagechika H, Endo Y. Bioorg Med Chem 17 344-350 (2009)
  88. Implication of androgen receptor in urinary bladder cancer: a critical mini review. Rahmani AH, Alzohairy M, Babiker AY, Khan AA, Aly SM, Rizvi MA. Int J Mol Epidemiol Genet 4 150-155 (2013)
  89. In vitro and in vivo structure-activity relationships of novel androgen receptor ligands with multiple substituents in the B-ring. Chen J, Hwang DJ, Chung K, Bohl CE, Fisher SJ, Miller DD, Dalton JT. Endocrinology 146 5444-5454 (2005)
  90. R726L androgen receptor mutation is uncommon in prostate cancer families in the united states. Gruber SB, Chen H, Tomsho LP, Lee N, Perrone EE, Cooney KA. Prostate 54 306-309 (2003)
  91. The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor. Takeda AN, Pinon GM, Bens M, Fagart J, Rafestin-Oblin ME, Vandewalle A. Mol Pharmacol 71 473-482 (2007)
  92. An examination of how different mutations at arginine 855 of the androgen receptor result in different androgen insensitivity phenotypes. Elhaji YA, Wu JH, Gottlieb B, Beitel LK, Alvarado C, Batist G, Trifiro MA. Mol Endocrinol 18 1876-1886 (2004)
  93. Bridging structural biology and genetics by computational methods: an investigation into how the R774C mutation in the AR gene can result in complete androgen insensitivity syndrome. Wu JH, Gottlieb B, Batist G, Sulea T, Purisima EO, Beitel LK, Trifiro M. Hum Mutat 22 465-475 (2003)
  94. Tunable recognition of the steroid alpha-face by adjacent pi-electron density. Friscić T, Lancaster RW, Fábián L, Karamertzanis PG. Proc Natl Acad Sci U S A 107 13216-13221 (2010)
  95. Analysis of 3D models of octopus estrogen receptor with estradiol: evidence for steric clashes that prevent estrogen binding. Baker ME, Chandsawangbhuwana C. Biochem Biophys Res Commun 361 782-788 (2007)
  96. Molecular Basis of Steroid Action in the Prostate. Zhu YS. Cellscience 1 27-55 (2005)
  97. Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding. Faucher F, Cantin L, Pereira de Jésus-Tran K, Lemieux M, Luu-The V, Labrie F, Breton R. J Mol Biol 369 525-540 (2007)
  98. Structural basis of ICF-causing mutations in the methyltransferase domain of DNMT3B. Lappalainen I, Vihinen M. Protein Eng 15 1005-1014 (2002)
  99. 4-(Anilino)pyrrole-2-carboxamides: Novel non-steroidal/non-anilide type androgen antagonists effective upon human prostate tumor LNCaP cells with mutated nuclear androgen receptor. Wakabayashi K, Imai K, Miyachi H, Hashimoto Y, Tanatani A. Bioorg Med Chem 16 6799-6812 (2008)
  100. C19-steroids as androgen receptor modulators: design, discovery, and structure-activity relationship of new steroidal androgen receptor antagonists. Marwah P, Marwah A, Lardy HA, Miyamoto H, Chang C. Bioorg Med Chem 14 5933-5947 (2006)
  101. Correlated evolution of androgen receptor and aromatase revisited. Reitzel AM, Tarrant AM. Mol Biol Evol 27 2211-2215 (2010)
  102. Dynamic communication between androgen and coactivator: mutually induced conformational perturbations in androgen receptor ligand-binding domain. Xu X, Yang W, Wang X, Li Y, Wang Y, Ai C. Proteins 79 1154-1171 (2011)
  103. Structure-activity relationships of synthetic progestins in a yeast-based in vitro androgen bioassay. McRobb L, Handelsman DJ, Kazlauskas R, Wilkinson S, McLeod MD, Heather AK. J Steroid Biochem Mol Biol 110 39-47 (2008)
  104. A bufadienolide derived androgen receptor antagonist with inhibitory activities against prostate cancer cells. Tian HY, Yuan XF, Jin L, Li J, Luo C, Ye WC, Jiang RW. Chem Biol Interact 207 16-22 (2014)
  105. Characterization of androgen receptor structure and nucleocytoplasmic shuttling of the rice field eel. Zhou F, Zhao W, Zuo Z, Sheng Y, Zhou X, Hou Y, Cheng H, Zhou R. J Biol Chem 285 37030-37040 (2010)
  106. Coactivation of an endogenous progesterone receptor by TIF2 in COS-7 cells. Hofman K, Swinnen JV, Verhoeven G, Heyns W. Biochem Biophys Res Commun 295 469-474 (2002)
  107. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity. Elhaji YA, Stoica I, Dennis S, Purisima EO, Lumbroso R, Beitel LK, Trifiro MA. Hum Mol Genet 15 921-931 (2006)
  108. The Met852 residue is a key organizer of the ligand-binding cavity of the human mineralocorticoid receptor. Fagart J, Seguin C, Pinon GM, Rafestin-Oblin ME. Mol Pharmacol 67 1714-1722 (2005)
  109. Anabolic-androgenic steroid interaction with rat androgen receptor in vivo and in vitro: a comparative study. Feldkoren BI, Andersson S. J Steroid Biochem Mol Biol 94 481-487 (2005)
  110. Androgen receptor genotyping in a large Australasian cohort with androgen insensitivity syndrome; identification of four novel mutations. Jeske YW, McGown IN, Cowley DM, Oley C, Thomsett MJ, Choong CS, Cotterill AM. J Pediatr Endocrinol Metab 20 893-908 (2007)
  111. Comparison of the molecular consequences of different mutations at residue 754 and 690 of the androgen receptor (AR) and androgen insensitivity syndrome (AIS) phenotype. Tadokoro R, Bunch T, Schwabe JW, Hughes IA, Murphy JC. Clin Endocrinol (Oxf) 71 253-260 (2009)
  112. Effects of lactone derivatives on aromatase (CYP19) activity in H295R human adrenocortical and (anti)androgenicity in transfected LNCaP human prostate cancer cells. Sanderson T, Renaud M, Scholten D, Nijmeijer S, van den Berg M, Cowell S, Guns E, Nelson C, Mutarapat T, Ruchirawat S. Eur J Pharmacol 593 92-98 (2008)
  113. Homology modelling of the ligand-binding domain of glucocorticoid receptor: binding site interactions with cortisol and corticosterone. Dey R, Roychowdhury P, Mukherjee C. Protein Eng 14 565-571 (2001)
  114. Identification of a lead pharmacophore for the development of potent nuclear receptor modulators as anticancer and X syndrome disease therapeutic agents. Lin HR, Abraham DJ. Bioorg Med Chem Lett 16 4178-4183 (2006)
  115. Mutation of the androgen receptor at amino acid 708 (Gly-->Ala) abolishes partial agonist activity of steroidal antiandrogens. Terouanne B, Nirdé P, Rabenoelina F, Bourguet W, Sultan C, Auzou G. Mol Pharmacol 63 791-798 (2003)
  116. New insights into the androgen-targeted therapies and epigenetic therapies in prostate cancer. Godbole AM, Njar VC. Prostate Cancer 2011 918707 (2011)
  117. Therapeutic androgen receptor ligands. Allan GF, Sui Z. Nucl Recept Signal 1 e009 (2003)
  118. 3D model of amphioxus steroid receptor complexed with estradiol. Baker ME, Chang DJ. Biochem Biophys Res Commun 386 516-520 (2009)
  119. 3D model of lamprey estrogen receptor with estradiol and 15alpha-hydroxy-estradiol. Baker ME, Chang DJ, Chandsawangbhuwana C. PLoS One 4 e6038 (2009)
  120. A new strategy for selective targeting of progesterone receptor with passive antagonists. Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G, Amazit L, Brion JD, Alami M, Lombès M, Loosfelt H, Rafestin-Oblin ME. Mol Endocrinol 27 909-924 (2013)
  121. A novel mutation F826L in the human androgen receptor in partial androgen insensitivity syndrome; increased NH2-/COOH-terminal domain interaction and TIF2 co-activation. Wong HY, Hoogerbrugge JW, Pang KL, van Leeuwen M, van Royen ME, Molier M, Berrevoets CA, Dooijes D, Dubbink HJ, van de Wijngaart DJ, Wolffenbuttel KP, Trapman J, Kleijer WJ, Drop SL, Grootegoed JA, Brinkmann AO. Mol Cell Endocrinol 292 69-78 (2008)
  122. Bisphenol A (BPA) binding on full-length architectures of estrogen receptor. Liu Y, Qu K, Hai Y, Zhao C. J Cell Biochem 119 6784-6794 (2018)
  123. Classification and comparison of ligand-binding sites derived from grid-mapped knowledge-based potentials. Hoppe C, Steinbeck C, Wohlfahrt G. J Mol Graph Model 24 328-340 (2006)
  124. Design, Synthesis, and Biological Evaluation of Novel Nonsteroidal Farnesoid X Receptor (FXR) Antagonists: Molecular Basis of FXR Antagonism. Huang H, Si P, Wang L, Xu Y, Xu X, Zhu J, Jiang H, Li W, Chen L, Li J. ChemMedChem 10 1184-1199 (2015)
  125. Docking and CoMSIA studies on steroids and non-steroidal chemicals as androgen receptor ligands. Wang X, Li X, Shi W, Wei S, Giesy JP, Yu H, Wang Y. Ecotoxicol Environ Saf 89 143-149 (2013)
  126. Inhibiting 3βHSD1 to eliminate the oncogenic effects of progesterone in prostate cancer. Hou Z, Huang S, Mei Z, Chen L, Guo J, Gao Y, Zhuang Q, Zhang X, Tan Q, Yang T, Liu Y, Chi Y, Qi L, Jiang T, Shao X, Wu Y, Xu X, Qin J, Ren R, Tang H, Wu D, Li Z. Cell Rep Med 3 100561 (2022)
  127. Severe forms of partial androgen insensitivity syndrome due to p.L830F novel mutation in androgen receptor gene in a Brazilian family. Petroli RJ, Maciel-Guerra AT, Soardi FC, de Calais FL, Guerra-Junior G, de Mello MP. BMC Res Notes 4 173 (2011)
  128. The binding mode of progesterone to its receptor deduced from molecular dynamics simulations. Mordasini T, Curioni A, Bursi R, Andreoni W. Chembiochem 4 155-161 (2003)
  129. Androgen receptor gene mutations in androgen insensitivity syndrome cause distinct patterns of reduced activation of androgen-responsive promoter constructs. Werner R, Schütt J, Hannema S, Röpke A, Wieacker P, Hiort O, Holterhus PM. J Steroid Biochem Mol Biol 101 1-10 (2006)
  130. Development of p-carborane-based nonsteroidal progesterone receptor antagonists. Fujii S, Nakano E, Yanagida N, Mori S, Masuno H, Kagechika H. Bioorg Med Chem 22 5329-5337 (2014)
  131. Discovery and structure-activity relationships of new steroidal compounds bearing a carboxy-terminal side chain as androgen receptor pure antagonists. Tachibana K, Imaoka I, Yoshino H, Kato N, Nakamura M, Ohta M, Kawata H, Taniguchi K, Ishikura N, Nagamuta M, Onuma E, Sato H. Bioorg Med Chem Lett 17 5573-5576 (2007)
  132. Discovery of an orally-active nonsteroidal androgen receptor pure antagonist and the structure-activity relationships of its derivatives. Tachibana K, Imaoka I, Shiraishi T, Yoshino H, Nakamura M, Ohta M, Kawata H, Taniguchi K, Ishikura N, Tsunenari T, Saito H, Nagamuta M, Nakagawa T, Takanashi K, Onuma E, Sato H. Chem Pharm Bull (Tokyo) 56 1555-1561 (2008)
  133. Effect of 25-hydroxyl group orientation on biological activity and binding to the 1alpha,25-dihydroxy vitamin D3 receptor. Collins ED, Bishop JE, Bula CM, Acevedo A, Okamura WH, Norman AW. J Steroid Biochem Mol Biol 94 279-288 (2005)
  134. Expression, purification and primary crystallographic study of human androgen receptor in complex with DNA and coactivator motifs. Zhou XE, Suino-Powell K, Ludidi PL, McDonnell DP, Xu HE. Protein Expr Purif 71 21-27 (2010)
  135. Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily. Tsuji M. J Struct Biol 185 355-365 (2014)
  136. A naturally occurring mutation in the human androgen receptor of a subject with complete androgen insensitivity confers binding and transactivation by estradiol. Bonagura TW, Deng M, Brown TR. Mol Cell Endocrinol 263 79-89 (2007)
  137. A novel point mutation of the androgen receptor (F804L) in an Egyptian newborn with complete androgen insensitivity associated with congenital glaucoma and hypertrophic pyloric stenosis. Gad YZ, Mazen I, Lumbroso S, Temtamy SA, Sultan C. Clin Genet 63 59-63 (2003)
  138. Acute exposure to bisphenol A and cadmium causes changes in the morphology of gerbil ventral prostates and promotes alterations in androgen-dependent proliferation and cell death. Colleta SJ, Antoniassi JQ, Zanatelli M, Santos FC, Góes RM, Vilamaior PS, Taboga SR. Environ Toxicol 32 48-61 (2017)
  139. Chemical synthesis and biological activities of 16alpha-derivatives of 5alpha-androstane-3alpha,17beta-diol as antiandrogens. Roy J, Breton R, Martel C, Labrie F, Poirier D. Bioorg Med Chem 15 3003-3018 (2007)
  140. Determination of the androgenicity of ligands using a single-chain probe carrying androgen receptor N-terminal peptides. Kim SB, Umezawa Y, Tao H. Anal Sci 25 1415-1420 (2009)
  141. Different types of androgen receptor mutations in patients with complete androgen insensitivity syndrome. Shao J, Hou J, Li B, Li D, Zhang N, Wang X. Intractable Rare Dis Res 4 54-59 (2015)
  142. High-throughput identification of refolding conditions for LXRbeta without a functional assay. Lin L, Seehra J, Stahl ML. Protein Expr Purif 47 355-366 (2006)
  143. Perspectives on designs of antiandrogens for prostate cancer. Estébanez-Perpiñá E, Jouravel N, Fletterick RJ. Expert Opin Drug Discov 2 1341-1355 (2007)
  144. Phenotypic and molecular characteristics of androgen insensitivity syndrome patients. Yuan SM, Zhang YN, Du J, Li W, Tu CF, Meng LL, Lin G, Lu GX, Tan YQ. Asian J Androl 20 473-478 (2018)
  145. Residues of the human nuclear vitamin D receptor that form hydrogen bonding interactions with the three hydroxyl groups of 1alpha,25-dihydroxyvitamin D3. Reddy MD, Stoynova L, Acevedo A, Collins ED. J Steroid Biochem Mol Biol 103 347-351 (2007)
  146. Role of residues 143 and 278 of the human nuclear Vitamin D receptor in the full-length and Delta165-215 deletion mutant. Acevedo A, Stoynova L, Davis K, Solórzano R, Collins ED. J Steroid Biochem Mol Biol 89-90 83-87 (2004)
  147. 18F-RB390: innovative ligand for imaging the T877A androgen receptor mutant in prostate cancer via positron emission tomography (PET). Bertolini R, Goepfert C, Andrieu T, Nichols S, Walter MA, Frey FJ, McCammon JA, Frey BM. Prostate 75 348-359 (2015)
  148. Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain. Harada T, Yamagishi K, Nakano T, Kitaura K, Tokiwa H. Naunyn Schmiedebergs Arch Pharmacol 377 607-615 (2008)
  149. An Amyloidogenic Sequence at the N-Terminus of the Androgen Receptor Impacts Polyglutamine Aggregation. Oppong E, Stier G, Gaal M, Seeger R, Stoeck M, Delsuc MA, Cato ACB, Kieffer B. Biomolecules 7 E44 (2017)
  150. Androgen receptor mutations modulate activation by 11-oxygenated androgens and glucocorticoids. Snaterse G, Mies R, van Weerden WM, French PJ, Jonker JW, Houtsmuller AB, van Royen ME, Visser JA, Hofland J. Prostate Cancer Prostatic Dis 26 293-301 (2023)
  151. Clinical characteristics, AR gene variants, and functional domains in 64 patients with androgen insensitivity syndrome. Liu Q, Yin X, Li P. J Endocrinol Invest 46 151-158 (2023)
  152. Combination of receptor-binding assays and designed mutant receptors for discerning agonists and antagonists. Matsui K. J Pharm Biomed Anal 43 822-828 (2007)
  153. Gene changes may minimize masculinizing and defeminizing influences of exposure to male cotwins in female callitrichine primates. French JA, Frye B, Cavanaugh J, Ren D, Mustoe AC, Rapaport L, Mickelberg J. Biol Sex Differ 7 28 (2016)
  154. Mutational Analysis of Androgen Receptor Gene in Two Families with Androgen Insensitivity. Akella RR. Indian J Endocrinol Metab 21 520-523 (2017)
  155. Solid-phase synthesis of model libraries of 3alpha,17beta-dihydroxy-16alpha-(aminoethyl-N-substituted)-5alpha-androstanes for the development of steroidal therapeutic agents. Maltais R, Mercier C, Labrie F, Poirier D. Mol Divers 9 67-79 (2005)
  156. Structural Analysis of Variability and Interaction of the N-terminal of the Oncogenic Effector CagA of Helicobacter pylori with Phosphatidylserine. Ulloa-Guerrero CP, Delgado MDP, Jaramillo CA. Int J Mol Sci 19 E3273 (2018)
  157. 20(S)-protopanaxadiol regio-selectively targets androgen receptor: anticancer effects in castration-resistant prostate tumors. Ben-Eltriki M, Deb S, Hassona M, Meckling G, Fazli L, Chin MY, Lallous N, Yamazaki T, Jia W, Rennie PS, Cherkasov A, Tomlinson Guns ES. Oncotarget 9 20965-20978 (2018)
  158. An S296R mutation in the human androgen receptor causes activation of the receptor by non-androgenic steroids and stronger inhibition by the nuclear receptor corepressor N-coR. Li YD, Lu Y, Chen GC, Lu J. Clin Exp Pharmacol Physiol 35 1252-1257 (2008)
  159. Computational analysis of androgen receptor (AR) variants to decipher the relationship between protein stability and related-diseases. Chen F, Chen X, Jiang F, Leng F, Liu W, Gui Y, Yu J. Sci Rep 10 12101 (2020)
  160. L712V mutation in the androgen receptor gene causes complete androgen insensitivity syndrome due to severe loss of androgen function. Rajender S, Gupta NJ, Chakrabarty B, Singh L, Thangaraj K. Steroids 78 1288-1292 (2013)
  161. Learning from estrogen receptor antagonism: structure-based identification of novel antiandrogens effective against multiple clinically relevant androgen receptor mutants. Liu B, Geng G, Lin R, Ren C, Wu JH. Chem Biol Drug Des 79 300-312 (2012)
  162. Ligand Binding Induces Agonistic-Like Conformational Adaptations in Helix 12 of Progesterone Receptor Ligand Binding Domain. Zheng L, Xia K, Mu Y. Front Chem 7 315 (2019)
  163. Structural basis for computational screening of non-steroidal androgen receptor ligands. Nyrönen TH, Söderholm AA. Expert Opin Drug Discov 5 5-20 (2010)
  164. Detection and functional portrayal of a novel class of dihydrotestosterone derived selective progesterone receptor modulators (SPRM). Andrieu T, Mani O, Goepfert C, Bertolini R, Guettinger A, Setoud R, Uh KY, Baker ME, Frey FJ, Frey BM. J Steroid Biochem Mol Biol 147 111-123 (2015)
  165. Drugging the Undruggable: Targeting the N-Terminal Domain of Nuclear Hormone Receptors. Sadar MD. Adv Exp Med Biol 1390 311-326 (2022)
  166. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome. Wang S, Xu H, An W, Zhu D, Li D. Exp Ther Med 11 2277-2283 (2016)
  167. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Li F, Song C, Zhang Y, Wu D. Acta Biochim Biophys Sin (Shanghai) 54 12-24 (2022)
  168. A New Diterpenoid of Indonesian Scoparia dulcis Linn: Isolation and Cytotoxic Activity against MCF-7 and T47D Cell Lines. Hasnawati H, Wahyuono S, Susidarti RA, Santosa D, Arfan A. Molecules 28 5960 (2023)
  169. A partially open conformation of an androgen receptor ligand-binding domain with drug-resistance mutations. Doamekpor SK, Peng P, Xu R, Ma L, Tong Y, Tong L. Acta Crystallogr F Struct Biol Commun 79 95-104 (2023)
  170. Biochemistry and molecular biology in Portugal: an overview of past and current contributions. Ramos AA, Ramos AA, Varela JC. IUBMB Life 60 265-269 (2008)
  171. Calcium Activation of the Androgen Receptor in Prostate Cells. Sharawi ZW, Khatrawi SM, Wang Q, Zhou H, Cyrus K, Yan G, Hoxter B, Haddad BR, Martin MB. Int J Endocrinol 2023 9907948 (2023)
  172. Cheminformatic Analysis and Machine Learning Modeling to Investigate Androgen Receptor Antagonists to Combat Prostate Cancer. Yu T, Nantasenamat C, Kachenton S, Anuwongcharoen N, Piacham T. ACS Omega 8 6729-6742 (2023)
  173. Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. Erzurumlu Y, Dogan HK, Catakli D, Aydogdu E, Muhammed MT. J Cell Commun Signal 17 793-811 (2023)
  174. Homology modelling of the ligand binding domain of mineralocorticoid receptor: close structural kinship with glucocorticoid receptor ligand binding domain and their similar binding mode with DOC (de-oxy corticosterone). Dey R, Roychowdhury P. J Biomol Struct Dyn 20 21-29 (2002)
  175. Hormone-induced enhancer assembly requires an optimal level of hormone receptor multivalent interactions. Chen L, Zhang Z, Han Q, Maity BK, Rodrigues L, Zboril E, Adhikari R, Ko SH, Li X, Yoshida SR, Xue P, Smith E, Xu K, Wang Q, Huang TH, Chong S, Liu Z. Mol Cell 83 3438-3456.e12 (2023)
  176. Case Reports Identification of the Rare Ala871Glu Mutation in the Androgen Receptor Gene Leading to Complete Androgen Insensitivity Syndrome in an Adolescent Girl with Primary Amenorrhea. Kapama A, Papadimitriou DT, Mastorakos G, Vlahos NF, Papagianni M. Children (Basel) 9 1900 (2022)
  177. N/C Interactions Are Dispensable for Normal In Vivo Functioning of the Androgen Receptor in Male Mice. El Kharraz S, Dubois V, Launonen KM, Helminen L, Palvimo JJ, Libert C, Smeets E, Moris L, Eerlings R, Vanderschueren D, Helsen C, Claessens F. Endocrinology 163 bqac104 (2022)
  178. Prenatal Diagnosis of Twin Fetuses with a Novel AR Gene Mutation in a Chinese Family of Complete Androgen Insensitivity Syndrome. Wu W, Geng Q, Liu Y, Xu Z, Li P, Xie J. Fetal Pediatr Pathol 36 432-436 (2017)