1dzq Citations

Structural basis of carbohydrate recognition by lectin II from Ulex europaeus, a protein with a promiscuous carbohydrate-binding site.

J Mol Biol 301 987-1002 (2000)
Related entries: 1qnw, 1qoo, 1qos, 1qot

Cited: 33 times
EuropePMC logo PMID: 10966800

Abstract

Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework.

Articles - 1dzq mentioned but not cited (3)

  1. Energetics of galactose- and glucose-aromatic amino acid interactions: implications for binding in galactose-specific proteins. Sujatha MS, Sasidhar YU, Balaji PV. Protein Sci 13 2502-2514 (2004)
  2. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study. A Santos JC, Nassif H, Page D, Muggleton SH, E Sternberg MJ. BMC Bioinformatics 13 162 (2012)
  3. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge. Nassif H, Al-Ali H, Khuri S, Keirouz W, Page D. Inductive Log Program 5989 149-165 (2010)


Reviews citing this publication (5)

  1. Norovirus disease: changing epidemiology and host susceptibility factors. Hutson AM, Atmar RL, Estes MK. Trends Microbiol 12 279-287 (2004)
  2. Role of Protein Glycosylation in Host-Pathogen Interaction. Lin B, Qing X, Liao J, Zhuo K. Cells 9 E1022 (2020)
  3. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Sander VA, Corigliano MG, Clemente M. Front Vet Sci 6 20 (2019)
  4. Use of lectins in immunohematology. Gorakshakar AC, Ghosh K. Asian J Transfus Sci 10 12-21 (2016)
  5. Research advances and prospects of legume lectins. Katoch R, Tripathi A. J Biosci 46 104 (2021)

Articles citing this publication (25)

  1. The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. Carrizo ME, Capaldi S, Perduca M, Irazoqui FJ, Nores GA, Monaco HL. J Biol Chem 280 10614-10623 (2005)
  2. Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Navarro-Gochicoa MT, Camut S, Timmers AC, Niebel A, Herve C, Boutet E, Bono JJ, Imberty A, Cullimore JV. Plant Physiol 133 1893-1910 (2003)
  3. Aromatic-carbohydrate interactions: an NMR and computational study of model systems. Vandenbussche S, Díaz D, Fernández-Alonso MC, Pan W, Vincent SP, Cuevas G, Cañada FJ, Jiménez-Barbero J, Bartik K. Chemistry 14 7570-7578 (2008)
  4. Structural basis for chitotetraose coordination by CGL3, a novel galectin-related protein from Coprinopsis cinerea. Wälti MA, Walser PJ, Thore S, Grünler A, Bednar M, Künzler M, Aebi M. J Mol Biol 379 146-159 (2008)
  5. High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2'-alpha-L-fucosyllactose and correlation with thermodynamic binding data. Svensson C, Teneberg S, Nilsson CL, Kjellberg A, Schwarz FP, Sharon N, Krengel U. J Mol Biol 321 69-83 (2002)
  6. Structural basis of oligomannose recognition by the Pterocarpus angolensis seed lectin. Loris R, Van Walle I, De Greve H, Beeckmans S, Deboeck F, Wyns L, Bouckaert J. J Mol Biol 335 1227-1240 (2004)
  7. Weak protein-protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus. Buts L, Dao-Thi MH, Loris R, Wyns L, Etzler M, Hamelryck T. J Mol Biol 309 193-201 (2001)
  8. Promiscuity of the euonymus carbohydrate-binding domain. Fouquaert E, Van Damme EJ. Biomolecules 2 415-434 (2012)
  9. Glycosylation changes in the salivary glycoproteins of alcohol-dependent patients: a pilot study. Kratz EM, Waszkiewicz N, Kaluza A, Szajda SD, Zalewska-Szajda B, Szulc A, Zwierz K, Ferens-Sieczkowska M. Alcohol Alcohol 49 23-30 (2014)
  10. Fabrication of quantum dot-lectin conjugates as novel fluorescent probes for microscopic and flow cytometric identification of leukemia cells from normal lymphocytes. Zhelev Z, Ohba H, Bakalova R, Jose R, Fukuoka S, Nagase T, Ishikawa M, Baba Y. Chem Commun (Camb) 1980-1982 (2005)
  11. A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode. Yaghoubi M, Rahimi F, Negahdari B, Rezayan AH, Shafiekhani A. Sci Rep 10 16017 (2020)
  12. A single N-acetylgalactosamine residue at threonine 106 modifies the dynamics and structure of interferon α2a around the glycosylation site. Ghasriani H, Belcourt PJ, Sauvé S, Hodgson DJ, Brochu D, Gilbert M, Aubin Y. J Biol Chem 288 247-254 (2013)
  13. Changes in fucosylation of human seminal IgG and secretory component of IgA in leukocytospermic patients. Kratz EM, Ferens-Sieczkowska M, Faundez R, Kątnik-Prastowska I. Glycoconj J 31 51-60 (2014)
  14. Structural investigation of a novel N-acetyl glucosamine binding chi-lectin which reveals evolutionary relationship with class III chitinases. Patil DN, Datta M, Dev A, Dhindwal S, Singh N, Dasauni P, Kundu S, Sharma AK, Tomar S, Kumar P. PLoS One 8 e63779 (2013)
  15. Identification of a new quaternary association for legume lectins. Moreno FB, de Oliveira TM, Martil DE, Viçoti MM, Bezerra GA, Abrego JR, Cavada BS, Filgueira de Azevedo W. J Struct Biol 161 133-143 (2008)
  16. Specificity in molecular design: a physical framework for probing the determinants of binding specificity and promiscuity in a biological environment. Radhakrishnan ML, Tidor B. J Phys Chem B 111 13419-13435 (2007)
  17. Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin. Buts L, Garcia-Pino A, Imberty A, Amiot N, Boons GJ, Beeckmans S, Versées W, Wyns L, Loris R. FEBS J 273 2407-2420 (2006)
  18. Binding Studies on a Library of Induced-Fit Synthetic Carbohydrate Receptors with Mannoside Selectivity. Palanichamy K, Bravo MF, Shlain MA, Schiro F, Naeem Y, Marianski M, Braunschweig AB. Chemistry 24 13971-13982 (2018)
  19. The possible association of clusterin fucosylation changes with male fertility disorders. Janiszewska E, Kokot I, Gilowska I, Faundez R, Kratz EM. Sci Rep 11 15674 (2021)
  20. Multiple drugs and multiple targets: an analysis of the electrostatic determinants of binding between non-nucleoside HIV-1 reverse transcriptase inhibitors and variants of HIV-1 RT. Minkara MS, Davis PH, Radhakrishnan ML. Proteins 80 573-590 (2012)
  21. Purification of normal lymphocytes from leukemic T-cells by lectin-affinity adsorbents - correlation with lectin-cell binding. Bakalova R, Ohba H. Cancer Lett 192 59-65 (2003)
  22. The Alterations of Serum IgG Fucosylation as a Potential Additional New Diagnostic Marker in Advanced Endometriosis. Sołkiewicz K, Krotkiewski H, Jędryka M, Czekański A, Kratz EM. J Inflamm Res 15 251-266 (2022)
  23. A Peptide-Lectin Fusion Strategy for Developing a Glycan Probe for Use in Various Assay Formats. Lim B, Kydd L, Jaworski J. Chemosensors (Basel) 7 55 (2019)
  24. Regiochemical Effects on the Carbohydrate Binding and Selectivity of Flexible Synthetic Carbohydrate Receptors with Indole and Quinoline Heterocyclic Groups. Thakur K, Shlain MA, Marianski M, Braunschweig AB. European J Org Chem 2021 5262-5274 (2021)
  25. Genetically Encoded Boronolectin as a Specific Red Fluorescent UDP-GlcNAc Biosensor. Zhang J, Li Z, Pang Y, Fan Y, Ai HW. ACS Sens 8 2996-3003 (2023)