1di9 Citations

Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase.

J Med Chem 43 133-8 (2000)
Cited: 99 times
EuropePMC logo PMID: 10633045

Abstract

4-Anilinoquinazolines represent an important class of protein kinase inhibitor. Modes of binding for two members of this inhibitor class were determined by X-ray crystallographic analysis of one inhibitor (4-[3-hydroxyanilino]-6,7-dimethoxyquinazoline) in complex with cyclin-dependent kinase 2 (CDK2) and the other (4-[3-methylsulfanylanilino]-6,7-dimethoxyquinazoline) in complex with p38 kinase. In both inhibitor/kinase structures, the 4-anilinoquinazoline was bound in the ATP site with the quinazoline ring system oriented along the peptide strand that links the two domains of the protein and with the anilino substituent projecting into a hydrophobic pocket within the protein interior. In each case, the nitrogen at position-1 of the quinazoline accepted a hydrogen bond from a backbone NH (CDK2, Leu-83; p38, Met-109) of the domain connector strand, and aromatic hydrogen atoms at C2 and C8 interacted with backbone carbonyl oxygen atoms of the peptide strand. The anilino group of the CDK2-bound compound was essentially coplanar with the quinazoline ring system and occupied a pocket between Lys-33 and Phe-80. For the p38-bound inhibitor, the anilino group was angled out of plane and was positioned between Lys-53 and Thr-106 in a manner similar to that observed for the aryl substituent of the pyridinylimidazole class of inhibitor.

Articles - 1di9 mentioned but not cited (16)

  1. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. Michel J, Tirado-Rives J, Jorgensen WL. J Am Chem Soc 131 15403-15411 (2009)
  2. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. Raman EP, Yu W, Lakkaraju SK, MacKerell AD. J Chem Inf Model 53 3384-3398 (2013)
  3. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. Rueda M, Bottegoni G, Abagyan R. J Chem Inf Model 49 716-725 (2009)
  4. Rapid flexible docking using a stochastic rotamer library of ligands. Ding F, Yin S, Dokholyan NV. J Chem Inf Model 50 1623-1632 (2010)
  5. A new method for ligand docking to flexible receptors by dual alanine scanning and refinement (SCARE). Bottegoni G, Kufareva I, Totrov M, Abagyan R. J Comput Aided Mol Des 22 311-325 (2008)
  6. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics. Armen RS, Chen J, Brooks CL. J Chem Theory Comput 5 2909-2923 (2009)
  7. Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Verma N, Rai AK, Kaushik V, Brünnert D, Chahar KR, Pandey J, Goyal P. Sci Rep 6 33949 (2016)
  8. Training a scoring function for the alignment of small molecules. Chan SL, Labute P. J Chem Inf Model 50 1724-1735 (2010)
  9. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. Front Oncol 9 1294 (2019)
  10. Virtual target screening: validation using kinase inhibitors. Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung SS, Woodcock HL, Guida WC, Brooks WH. J Chem Inf Model 52 2192-2203 (2012)
  11. A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. Romano V, de Beer TA, Schwede T. BMC Res Notes 10 104 (2017)
  12. A fluorescence-based assay for p38α recruitment site binders: identification of rooperol as a novel p38α kinase inhibitor. Li J, Kaoud TS, LeVieux J, Gilbreath B, Moharana S, Dalby KN, Kerwin SM. Chembiochem 14 66-71 (2013)
  13. Developing an effective polarizable bond method for small molecules with application to optimized molecular docking. Duan G, Ji C, Zhang JZH. RSC Adv 10 15530-15540 (2020)
  14. Rappertk: a versatile engine for discrete restraint-based conformational sampling of macromolecules. Gore SP, Karmali AM, Blundell TL. BMC Struct Biol 7 13 (2007)
  15. Rapid Identification of Inhibitors and Prediction of Ligand Selectivity for Multiple Proteins: Application to Protein Kinases. Ma Z, Huang SY, Cheng F, Zou X. J Phys Chem B 125 2288-2298 (2021)
  16. The Blockade of Mitogen-Activated Protein Kinase 14 Activation by Marine Natural Product Crassolide Triggers ICD in Tumor Cells and Stimulates Anti-Tumor Immunity. Tsai KC, Chen CS, Su JH, Lee YC, Tseng YH, Wei WC. Mar Drugs 21 225 (2023)


Reviews citing this publication (16)

  1. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Vermeulen K, Van Bockstaele DR, Berneman ZN. Cell Prolif 36 131-149 (2003)
  2. Pharmacological inhibitors of cyclin-dependent kinases. Knockaert M, Greengard P, Meijer L. Trends Pharmacol Sci 23 417-425 (2002)
  3. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). Mills RD, Sim CH, Mok SS, Mulhern TD, Culvenor JG, Cheng HC. J Neurochem 105 18-33 (2008)
  4. The development of HKI-272 and related compounds for the treatment of cancer. Wissner A, Mansour TS. Arch Pharm (Weinheim) 341 465-477 (2008)
  5. Small molecular anti-cytokine agents. Wagner G, Laufer S. Med Res Rev 26 1-62 (2006)
  6. Designing inhibitors of cyclin-dependent kinases. Hardcastle IR, Golding BT, Griffin RJ. Annu Rev Pharmacol Toxicol 42 325-348 (2002)
  7. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  8. The 4-anilinoquinazoline class of inhibitors of the erbB family of receptor tyrosine kinases. Denny WA. Farmaco 56 51-56 (2001)
  9. Target-family-oriented focused libraries for kinases--conceptual design aspects and commercial availability. Prien O. Chembiochem 6 500-505 (2005)
  10. Irreversible inhibitors of the erbB family of protein tyrosine kinases. Denny WA. Pharmacol Ther 93 253-261 (2002)
  11. Autophagic action of new targeting agents in head and neck oncology. Rikiishi H. Cancer Biol Ther 13 978-991 (2012)
  12. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Martin MP, Endicott JA, Noble MEM. Essays Biochem 61 439-452 (2017)
  13. A Comprehensive Structural Overview of p38α MAPK in Complex with Type I Inhibitors. Astolfi A, Iraci N, Manfroni G, Barreca ML, Cecchetti V. ChemMedChem 10 957-969 (2015)
  14. Small Molecule Inhibitors for Hepatocellular Carcinoma: Advances and Challenges. Kamal MA, Mandour YM, Abd El-Aziz MK, Stein U, El Tayebi HM. Molecules 27 5537 (2022)
  15. Standing on the shoulders of giants: a retrospective analysis of kinase drug discovery at AstraZeneca. Kettle JG, Wilson DM. Drug Discov Today 21 1596-1608 (2016)
  16. Current Insights and Advancements in Head and Neck Cancer: Emerging Biomarkers and Therapeutics with Cues from Single Cell and 3D Model Omics Profiling. Jawa Y, Yadav P, Gupta S, Mathan SV, Pandey J, Saxena AK, Kateriya S, Tiku AB, Mondal N, Bhattacharya J, Ahmad S, Chaturvedi R, Tyagi RK, Tandon V, Singh RP. Front Oncol 11 676948 (2021)

Articles citing this publication (67)

  1. Rational design of inhibitors that bind to inactive kinase conformations. Liu Y, Gray NS. Nat Chem Biol 2 358-364 (2006)
  2. Phase II study of lapatinib in recurrent or metastatic epidermal growth factor receptor and/or erbB2 expressing adenoid cystic carcinoma and non adenoid cystic carcinoma malignant tumors of the salivary glands. Agulnik M, Cohen EW, Cohen RB, Chen EX, Vokes EE, Hotte SJ, Winquist E, Laurie S, Hayes DN, Dancey JE, Brown S, Pond GR, Lorimer I, Daneshmand M, Ho J, Tsao MS, Siu LL. J Clin Oncol 25 3978-3984 (2007)
  3. Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Blair JA, Rauh D, Kung C, Yun CH, Fan QW, Rode H, Zhang C, Eck MJ, Weiss WA, Shokat KM. Nat Chem Biol 3 229-238 (2007)
  4. Southwest Oncology Group study S0413: a phase II trial of lapatinib (GW572016) as first-line therapy in patients with advanced or metastatic gastric cancer. Iqbal S, Goldman B, Fenoglio-Preiser CM, Lenz HJ, Zhang W, Danenberg KD, Shibata SI, Blanke CD. Ann Oncol 22 2610-2615 (2011)
  5. A multi-institutional phase II study of the efficacy and tolerability of lapatinib in patients with advanced hepatocellular carcinomas. Bekaii-Saab T, Markowitz J, Prescott N, Sadee W, Heerema N, Wei L, Dai Z, Papp A, Campbell A, Culler K, Balint C, O'Neil B, Lee RM, Zalupski M, Dancey J, Chen H, Grever M, Eng C, Villalona-Calero M. Clin Cancer Res 15 5895-5901 (2009)
  6. HER2/neu may not be an interesting target in biliary cancers: results of an early phase II study with lapatinib. Peck J, Wei L, Zalupski M, O'Neil B, Villalona Calero M, Bekaii-Saab T. Oncology 82 175-179 (2012)
  7. Lapatinib and potential prognostic value of EGFR mutations in a Gynecologic Oncology Group phase II trial of persistent or recurrent endometrial cancer. Leslie KK, Sill MW, Lankes HA, Fischer EG, Godwin AK, Gray H, Schilder RJ, Walker JL, Tewari K, Hanjani P, Abulafia O, Rose PG. Gynecol Oncol 127 345-350 (2012)
  8. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Davare MA, Vellore NA, Wagner JP, Eide CA, Goodman JR, Drilon A, Deininger MW, O'Hare T, Druker BJ. Proc Natl Acad Sci U S A 112 E5381-90 (2015)
  9. Discovery of a novel family of CDK inhibitors with the program LIDAEUS: structural basis for ligand-induced disordering of the activation loop. Wu SY, McNae I, Kontopidis G, McClue SJ, McInnes C, Stewart KJ, Wang S, Zheleva DI, Marriage H, Lane DP, Taylor P, Fischer PM, Walkinshaw MD. Structure 11 399-410 (2003)
  10. A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. Patel Y, Gillet VJ, Bravi G, Leach AR. J Comput Aided Mol Des 16 653-681 (2002)
  11. A multicenter phase II clinical trial of lapatinib (GW572016) in hormonally untreated advanced prostate cancer. Sridhar SS, Hotte SJ, Chin JL, Hudes GR, Gregg R, Trachtenberg J, Wang L, Tran-Thanh D, Pham NA, Tsao MS, Hedley D, Dancey JE, Moore MJ. Am J Clin Oncol 33 609-613 (2010)
  12. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules. Yu W, Lakkaraju SK, Raman EP, Fang L, MacKerell AD. J Chem Inf Model 55 407-420 (2015)
  13. Functional classification of protein kinase binding sites using Cavbase. Kuhn D, Weskamp N, Hüllermeier E, Klebe G. ChemMedChem 2 1432-1447 (2007)
  14. Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase. Abouzid K, Shouman S. Bioorg Med Chem 16 7543-7551 (2008)
  15. Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and C-erbB-2. Cockerill S, Stubberfield C, Stables J, Carter M, Guntrip S, Smith K, McKeown S, Shaw R, Topley P, Thomsen L, Affleck K, Jowett A, Hayes D, Willson M, Woollard P, Spalding D. Bioorg Med Chem Lett 11 1401-1405 (2001)
  16. Quinazolines as cyclin dependent kinase inhibitors. Sielecki TM, Johnson TL, Liu J, Muckelbauer JK, Grafstrom RH, Cox S, Boylan J, Burton CR, Chen H, Smallwood A, Chang CH, Boisclair M, Benfield PA, Trainor GL, Seitz SP. Bioorg Med Chem Lett 11 1157-1160 (2001)
  17. Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). Juvale K, Gallus J, Wiese M. Bioorg Med Chem 21 7858-7873 (2013)
  18. Novel, potent and selective anilinoquinazoline and anilinopyrimidine inhibitors of p38 MAP kinase. Cumming JG, McKenzie CL, Bowden SG, Campbell D, Masters DJ, Breed J, Jewsbury PJ. Bioorg Med Chem Lett 14 5389-5394 (2004)
  19. Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents. Wissner A, Brawner Floyd MB, Rabindran SK, Nilakantan R, Greenberger LM, Shen R, Wang YF, Tsou HR. Bioorg Med Chem Lett 12 2893-2897 (2002)
  20. 3D-QSAR studies on c-Src kinase inhibitors and docking analyses of a potent dual kinase inhibitor of c-Src and c-Abl kinases. Thaimattam R, Daga PR, Banerjee R, Iqbal J. Bioorg Med Chem 13 4704-4712 (2005)
  21. Inhibitors of epidermal growth factor receptor tyrosine kinase: Novel C-5 substituted anilinoquinazolines designed to target the ribose pocket. Ballard P, Bradbury RH, Harris CS, Hennequin LF, Hickinson M, Johnson PD, Kettle JG, Klinowska T, Leach AG, Morgentin R, Pass M, Ogilvie DJ, Olivier A, Warin N, Williams EJ. Bioorg Med Chem Lett 16 1633-1637 (2006)
  22. 5-Substituted 4-anilinoquinazolines as potent, selective and orally active inhibitors of erbB2 receptor tyrosine kinase. Ballard P, Bradbury RH, Hennequin LF, Hickinson DM, Johnson PD, Kettle JG, Klinowska T, Morgentin R, Ogilvie DJ, Olivier A. Bioorg Med Chem Lett 15 4226-4229 (2005)
  23. SAR of 2,6-diamino-3,5-difluoropyridinyl substituted heterocycles as novel p38MAP kinase inhibitors. Revesz L, Di Padova FE, Buhl T, Feifel R, Gram H, Hiestand P, Manning U, Wolf R, Zimmerlin AG. Bioorg Med Chem Lett 12 2109-2112 (2002)
  24. Structural characterization of proteins using residue environments. Mooney SD, Liang MH, DeConde R, Altman RB. Proteins 61 741-747 (2005)
  25. In Silico Drug-Designing Studies on Flavanoids as Anticolon Cancer Agents: Pharmacophore Mapping, Molecular Docking, and Monte Carlo Method-Based QSAR Modeling. Simon L, Imane A, Srinivasan KK, Pathak L, Daoud I. Interdiscip Sci 9 445-458 (2017)
  26. Eastern Cooperative Oncology Group Phase II Trial of lapatinib in men with biochemically relapsed, androgen dependent prostate cancer. Liu G, Chen YH, Kolesar J, Huang W, Dipaola R, Pins M, Carducci M, Stein M, Bubley GJ, Wilding G. Urol Oncol 31 211-218 (2013)
  27. Biphenyl amide p38 kinase inhibitors 2: Optimisation and SAR. Angell RM, Angell TD, Bamborough P, Brown D, Brown M, Buckton JB, Cockerill SG, Edwards CD, Jones KL, Longstaff T, Smee PA, Smith KJ, Somers DO, Walker AL, Willson M. Bioorg Med Chem Lett 18 324-328 (2008)
  28. In silico QSAR studies of anilinoquinolines as EGFR inhibitors. Pasha FA, Muddassar M, Srivastava AK, Cho SJ. J Mol Model 16 263-277 (2010)
  29. Inhibitors of epidermal growth factor receptor tyrosine kinase: optimisation of potency and in vivo pharmacokinetics. Ballard P, Bradbury RH, Harris CS, Hennequin LF, Hickinson M, Kettle JG, Kendrew J, Klinowska T, Ogilvie DJ, Pearson SE, Williams EJ, Wilson I. Bioorg Med Chem Lett 16 4908-4912 (2006)
  30. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. García-Sosa AT, Mancera RL. J Mol Model 12 422-431 (2006)
  31. Synthesis and SAR of 4-(3-hydroxyphenylamino)pyrrolo[2,1-f][1,2,4]triazine based VEGFR-2 kinase inhibitors. Borzilleri RM, Cai ZW, Ellis C, Fargnoli J, Fura A, Gerhardt T, Goyal B, Hunt JT, Mortillo S, Qian L, Tokarski J, Vyas V, Wautlet B, Zheng X, Bhide RS. Bioorg Med Chem Lett 15 1429-1433 (2005)
  32. Benzamides and benzamidines as specific inhibitors of epidermal growth factor receptor and v-Src protein tyrosine kinases. Asano T, Yoshikawa T, Usui T, Yamamoto H, Yamamoto Y, Uehara Y, Nakamura H. Bioorg Med Chem 12 3529-3542 (2004)
  33. Discovering some novel tetrahydroquinoline derivatives bearing the biologically active sulfonamide moiety as a new class of antitumor agents. Alqasoumi SI, Al-Taweel AM, Alafeefy AM, Ghorab MM, Noaman E. Eur J Med Chem 45 1849-1853 (2010)
  34. Virtual screening using a conformationally flexible target protein: models for ligand binding to p38α MAPK. Vinh NB, Simpson JS, Scammells PJ, Chalmers DK. J Comput Aided Mol Des 26 409-423 (2012)
  35. Design of EGFR kinase inhibitors: a ligand-based approach and its confirmation with structure-based studies. Vema A, Panigrahi SK, Rambabu G, Gopalakrishnan B, Sarma JA, Desiraju GR. Bioorg Med Chem 11 4643-4653 (2003)
  36. Design, synthesis, biological evaluation, and molecular modeling study of 4-alkoxyquinazoline derivatives as potential VEGFR2 kinase inhibitors. Sun J, Li DD, Li JR, Fang F, Du QR, Qian Y, Zhu HL. Org Biomol Chem 11 7676-7686 (2013)
  37. MADAMM: a multistaged docking with an automated molecular modeling protocol. Cerqueira NM, Bras NF, Fernandes PA, Ramos MJ. Proteins 74 192-206 (2009)
  38. Purine derivatives as potent Bruton's tyrosine kinase (BTK) inhibitors for autoimmune diseases. Shi Q, Tebben A, Dyckman AJ, Li H, Liu C, Lin J, Spergel S, Burke JR, McIntyre KW, Olini GC, Strnad J, Surti N, Muckelbauer JK, Chang C, An Y, Cheng L, Ruan Q, Leftheris K, Carter PH, Tino J, De Lucca GV. Bioorg Med Chem Lett 24 2206-2211 (2014)
  39. The discovery of substituted 4-(3-hydroxyanilino)-quinolines as potent RET kinase inhibitors. Graham Robinett R, Freemerman AJ, Skinner MA, Shewchuk L, Lackey K. Bioorg Med Chem Lett 17 5886-5893 (2007)
  40. Effective lead optimization targeting the displacement of bridging receptor-ligand water molecules. Chen D, Li Y, Zhao M, Tan W, Li X, Savidge T, Guo W, Fan X. Phys Chem Chem Phys 20 24399-24407 (2018)
  41. X-ray structural analysis of tau-tubulin kinase 1 and its interactions with small molecular inhibitors. Xue Y, Wan PT, Hillertz P, Schweikart F, Zhao Y, Wissler L, Dekker N. ChemMedChem 8 1846-1854 (2013)
  42. Antiproliferative, antioxidant and binding mechanism analysis of prodigiosin from newly isolated radio-resistant Streptomyces sp. strain WMA-LM31. Sajjad W, Sajjad W, Ahmad S, Aziz I, Azam SS, Hasan F, Shah AA. Mol Biol Rep 45 1787-1798 (2018)
  43. Syntheses and EGFR kinase inhibitory activity of 6-substituted-4-anilino [1,7] and [1,8] naphthyridine-3-carbonitriles. Wissner A, Hamann PR, Nilakantan R, Greenberger LM, Ye F, Rapuano TA, Loganzo F. Bioorg Med Chem Lett 14 1411-1416 (2004)
  44. A minimalist approach to fragment-based ligand design using common rings and linkers: application to kinase inhibitors. Aronov AM, Bemis GW. Proteins 57 36-50 (2004)
  45. Arene radiofluorination enabled by photoredox-mediated halide interconversion. Chen W, Wang H, Tay NES, Pistritto VA, Li KP, Zhang T, Wu Z, Nicewicz DA, Li Z. Nat Chem 14 216-223 (2022)
  46. Development of newly synthesised quinazolinone-based CDK2 inhibitors with potent efficacy against melanoma. Mohammed ER, Elmasry GF. J Enzyme Inhib Med Chem 37 686-700 (2022)
  47. Design and Evaluation of Novel Antimicrobial and Anticancer Agents Among Tetrazolo[1,5-c]quinazoline-5-thione S-Derivatives. Antypenko LM, Kovalenko SI, Antypenko OM, Katsev AM, Achkasova OM. Sci Pharm 81 15-42 (2013)
  48. Discovering novel 3-nitroquinolines as a new class of anticancer agents. Li HH, Huang H, Zhang XH, Luo XM, Lin LP, Jiang HL, Ding J, Chen KX, Liu H. Acta Pharmacol Sin 29 1529-1538 (2008)
  49. Homology models of the mutated EGFR and their response towards quinazoline analogues. Kotra S, Madala KK, Jamil K. J Mol Graph Model 27 244-254 (2008)
  50. Synthesis, biological evaluation and molecular modelling studies of 4-anilinoquinazoline derivatives as protein kinase inhibitors. Waiker DK, Karthikeyan C, Poongavanam V, Kongsted J, Lozach O, Meijer L, Trivedi P. Bioorg Med Chem 22 1909-1915 (2014)
  51. Design, synthesis and characterization of "clickable" 4-anilinoquinazoline kinase inhibitors. Perera BG, Maly DJ. Mol Biosyst 4 542-550 (2008)
  52. Lapatinib, a Dual Inhibitor of Epidermal Growth Factor Receptor (EGFR) and HER-2, Enhances Radiosensitivity in Mouse Bladder Tumor Line-2 (MBT-2) Cells In Vitro and In Vivo. Mu Y, Sun D. Med Sci Monit 24 5811-5819 (2018)
  53. Rational approach to the synthesis, evaluation, and (68)ga labeling of a novel 4-anilinoquinoline epidermal growth factor receptor inhibitor as a new imaging agent that selectively targets the epidermal growth factor receptor tyrosine kinase. Theeraladanon C, Takahashi N, Shiina M, Hamada K, Takada Y, Endo H, Tateishi U, Oka T, Ogata K, Inoue T. Cancer Biother Radiopharm 25 479-485 (2010)
  54. Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing. El-Hawary SS, Mohammed R, Taher MA, AbouZid SF, Mansour MA, Almahmoud SA, Huwaimel B, Amin E. Plants (Basel) 11 888 (2022)
  55. Determination of CH330331, a novel 4-anilinoquinazoline inhibitor of epidermal growth factor receptor tyrosine kinase, in human Caco-2 monolayers by high performance liquid chromatography with ultraviolet detection: application to a trans-epithelial transport study. Sun HY, Guan S, Bi HC, Su QB, Huang WL, Chowbay B, Huang M, Chen X, Li CG, Zhou SF. J Chromatogr B Analyt Technol Biomed Life Sci 854 320-327 (2007)
  56. In silico study of porphyrin-anthraquinone hybrids as CDK2 inhibitor. Arba M, Ihsan S, Ramadhan OA, Tjahjono DH. Comput Biol Chem 67 9-14 (2017)
  57. Metabolism and pharmacokinetics of allitinib in cancer patients: the roles of cytochrome P450s and epoxide hydrolase in its biotransformation. Lin L, Xie C, Gao Z, Chen X, Zhong D. Drug Metab Dispos 42 872-884 (2014)
  58. N-(1H-Pyrazol-3-yl)quinazolin-4-amines as a novel class of casein kinase 1δ/ε inhibitors: Synthesis, biological evaluation and molecular modeling studies. Karthikeyan C, Jharia P, Waiker DK, Nusbaum AC, Amawi H, Kirwen EM, Christman R, Arudra SKC, Meijer L, Tiwari AK, Trivedi P. Bioorg Med Chem Lett 27 2663-2667 (2017)
  59. Synthesis and Anticancer Activity of 2-(Alkyl-, Alkaryl-, Aryl-, Hetaryl-)-[1,2,4]triazolo[1,5-c]quinazolines. Kovalenko SI, Antypenko LM, Bilyi AK, Kholodnyak SV, Karpenko OV, Antypenko OM, Mykhaylova NS, Los TI, Kolomoets OS. Sci Pharm 81 359-391 (2013)
  60. Phase II study on the efficacy and safety of Lapatinib administered beyond disease progression and combined with vinorelbine in HER-2/neu- positive advanced breast cancer: results of the CECOG LaVie trial. Thallinger C, Lang I, Kuhar CG, Bartsch R, Singer CF, Petruzelka L, Melichar B, Knittelfelder R, Brodowicz T, Zielinski C. BMC Cancer 16 121 (2016)
  61. Collaborative Approach between Explainable Artificial Intelligence and Simplified Chemical Interactions to Explore Active Ligands for Cyclin-Dependent Kinase 2. Shimazaki T, Tachikawa M. ACS Omega 7 10372-10381 (2022)
  62. Ligand shape emerges in solvent dipole ordering region at ligand binding site of protein. Murata K, Nagata N, Nakanishi I, Kitaura K. J Comput Chem 31 791-796 (2010)
  63. Synthesis and pharmacological study of Rho-kinase inhibitors: pharmacomodulations on the lead compound Fasudil. Logé C, Siomboing X, Wallez V, Scalbert E, Bennejean C, Cario-Tourmaniantz C, Loirand G, Gressier B, Pacaud P, Luyckx M. J Enzyme Inhib Med Chem 18 127-138 (2003)
  64. Absorption of CH330331, a novel 4-anilinoquinazoline inhibitor of epidermal growth factor receptor tyrosine kinase: comparative studies using in vitro, in situ and in vivo models. Sun H, Bi H, Huang M, Liu D, Qin Z. Biopharm Drug Dispos 31 486-494 (2010)
  65. Nifuroxazide boosts the anticancer efficacy of palbociclib-induced senescence by dual inhibition of STAT3 and CDK2 in triple-negative breast cancer. Wang X, Shi W, Wang X, Lu JJ, He P, Zhang H, Chen X. Cell Death Discov 9 355 (2023)
  66. Scaffold Hopping Approach to a New Series of Pyridine Derivatives as Potent Inhibitors of CDK2. Xu X, Yao Q. Arch Pharm (Weinheim) 349 224-231 (2016)
  67. Tosylate salts of the anticancer drug lapatinib. Ravikumar K, Sridhar B, Nanubolu JB, Bhujanga Rao AK, Jyothiprasad R. Acta Crystallogr C 69 1516-1523 (2013)