1d8t Citations

Structure of an EF-Tu complex with a thiazolyl peptide antibiotic determined at 2.35 A resolution: atomic basis for GE2270A inhibition of EF-Tu.

Biochemistry 39 37-45 (2000)
Cited: 63 times
EuropePMC logo PMID: 10625477

Abstract

The structure of a 1:1 molar complex between Escherichia coli elongation factor (EF) Tu-GDP and the cyclic thiazolyl peptide antibiotic, GE2270A, has been determined by X-ray diffraction analysis to a resolution of 2.35 A and refined to a crystallographic refinement factor of 20.6%. The antibiotic binds in the second domain of EF-Tu-GDP, making contact with three segments of amino acids (residues 215-230, 256-264, and 273-277). The majority of the protein-antibiotic contacts are van der Waals interactions. A striking feature of the antibiotic binding site is the presence of a salt bridge, not previously observed in other EF-Tu complexes. The ionic interaction between Arg 223 and Glu 259 forms over the antibiotic and probably accounts for the strong affinity observed between EF-Tu and GE2270A. Arg 223 and Glu 259 are highly conserved, but not invariant throughout the prokaryotic EF-Tu family, suggesting that the antibiotic may bind EF-Tu from some organisms better than others may. Superposition of the antibiotic binding site on the EF-Tu-GTP conformation reveals that one region of the antibiotic would form steric clashes with the guanine nucleotide-binding domain in the GTP, but not the GDP, conformation. Another region of the antibiotic binds to the same site as the aminoacyl group of tRNA. Together with prior biochemical studies, the structural findings confirm that GE2270A inhibits protein synthesis by blocking the GDP to GTP conformational change and by directly competing with aminoacyl-tRNA for the same binding site on EF-Tu. In each of the bacterial strains that are resistant to GE2270A, the effect of a site-specific mutation in EF-Tu could explain resistance. Comparison of the GE2270A site in EF-Tu with sequence homologues, EF-G and EF-1alpha, suggests steric clashes that would prevent the antibiotic from binding to translocation factors or to the eukaryotic equivalent of EF-Tu. Although GE2270A is a potent antibiotic, its clinical efficacy is limited by its low aqueous solubility. The results presented here provide the details necessary to enhance the solubility of GE2270A without disrupting its inhibitory properties.

Reviews - 1d8t mentioned but not cited (2)

  1. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Chem Rev 122 14722-14814 (2022)
  2. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Cao L, Do T, Link AJ. J Ind Microbiol Biotechnol 48 kuab005 (2021)

Articles - 1d8t mentioned but not cited (2)

  1. How proteins bind macrocycles. Villar EA, Beglov D, Chennamadhavuni S, Porco JA, Kozakov D, Vajda S, Whitty A. Nat. Chem. Biol. 10 723-731 (2014)
  2. Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. Xia K, Manning M, Hesham H, Lin Q, Bystroff C, Colón W. Proc Natl Acad Sci U S A 104 17329-17334 (2007)


Reviews citing this publication (21)

  1. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Nat Prod Rep 30 108-160 (2013)
  2. The A-Z of bacterial translation inhibitors. Wilson DN. Crit. Rev. Biochem. Mol. Biol. 44 393-433 (2009)
  3. Elongation factors in protein biosynthesis. Andersen GR, Nissen P, Nyborg J. Trends Biochem. Sci. 28 434-441 (2003)
  4. The function and synthesis of ribosomes. Lafontaine DL, Tollervey D. Nat. Rev. Mol. Cell Biol. 2 514-520 (2001)
  5. Alpha-kinases: analysis of the family and comparison with conventional protein kinases. Drennan D, Ryazanov AG. Prog. Biophys. Mol. Biol. 85 1-32 (2004)
  6. From amino acids to heteroaromatics--thiopeptide antibiotics, nature's heterocyclic peptides. Hughes RA, Moody CJ. Angew. Chem. Int. Ed. Engl. 46 7930-7954 (2007)
  7. Recent advances in thiopeptide antibiotic biosynthesis. Li C, Kelly WL. Nat Prod Rep 27 153-164 (2010)
  8. Thiazolyl peptide antibiotic biosynthesis: a cascade of post-translational modifications on ribosomal nascent proteins. Walsh CT, Acker MG, Bowers AA. J. Biol. Chem. 285 27525-27531 (2010)
  9. Elongation factor Tu-targeted antibiotics: four different structures, two mechanisms of action. Parmeggiani A, Nissen P. FEBS Lett. 580 4576-4581 (2006)
  10. Recent advances in the chemistry and biology of naturally occurring antibiotics. Nicolaou KC, Chen JS, Edmonds DJ, Estrada AA. Angew. Chem. Int. Ed. Engl. 48 660-719 (2009)
  11. Thiopeptide antibiotics: retrospective and recent advances. Just-Baringo X, Albericio F, Álvarez M. Mar Drugs 12 317-351 (2014)
  12. Biosynthesis of thiopeptide antibiotics and their pathway engineering. Zhang Q, Liu W. Nat Prod Rep 30 218-226 (2013)
  13. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. Chem. Rev. 117 5389-5456 (2017)
  14. Anti-MRSA agents: under investigation, in the exploratory phase and clinically available. Bryskier A. Expert Rev Anti Infect Ther 3 505-553 (2005)
  15. Micrococcin P1: structure, biology and synthesis. Ciufolini MA, Lefranc D. Nat Prod Rep 27 330-342 (2010)
  16. Fixing the Unfixable: The Art of Optimizing Natural Products for Human Medicine. Yñigez-Gutierrez AE, Bachmann BO. J Med Chem 62 8412-8428 (2019)
  17. tRNAs as antibiotic targets. Chopra S, Reader J. Int J Mol Sci 16 321-349 (2015)
  18. Antibacterials Developed to Target a Single Organism: Mechanisms and Frequencies of Reduced Susceptibility to the Novel Anti-Clostridium difficile Compounds Fidaxomicin and LFF571. Leeds JA. Cold Spring Harb Perspect Med 6 a025445 (2016)
  19. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. Li Y, Rebuffat S. J. Biol. Chem. 295 34-54 (2020)
  20. Elucidating and engineering thiopeptide biosynthesis. Bennallack PR, Griffitts JS. World J. Microbiol. Biotechnol. 33 119 (2017)
  21. Translation-Targeting RiPPs and Where to Find Them. Travin DY, Bikmetov D, Severinov K. Front Genet 11 226 (2020)

Articles citing this publication (38)

  1. Manipulation of thiocillin variants by prepeptide gene replacement: structure, conformation, and activity of heterocycle substitution mutants. Bowers AA, Acker MG, Koglin A, Walsh CT. J. Am. Chem. Soc. 132 7519-7527 (2010)
  2. Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. Acker MG, Bowers AA, Walsh CT. J. Am. Chem. Soc. 131 17563-17565 (2009)
  3. Antimicrobial evaluation of nocathiacins, a thiazole peptide class of antibiotics. Pucci MJ, Bronson JJ, Barrett JF, DenBleyker KL, Discotto LF, Fung-Tomc JC, Ueda Y. Antimicrob. Agents Chemother. 48 3697-3701 (2004)
  4. Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants. Young TS, Dorrestein PC, Walsh CT. Chem. Biol. 19 1600-1610 (2012)
  5. EF-Tu binding peptides identified, dissected, and affinity optimized by phage display. Murase K, Morrison KL, Tam PY, Stafford RL, Jurnak F, Weiss GA. Chem. Biol. 10 161-168 (2003)
  6. The posttranslational modification cascade to the thiopeptide berninamycin generates linear forms and altered macrocyclic scaffolds. Malcolmson SJ, Young TS, Ruby JG, Skewes-Cox P, Walsh CT. Proc. Natl. Acad. Sci. U.S.A. 110 8483-8488 (2013)
  7. Total synthesis of thiopeptide antibiotics GE2270A, GE2270T, and GE2270C1. Nicolaou KC, Dethe DH, Leung GY, Zou B, Chen DY. Chem Asian J 3 413-429 (2008)
  8. Thiopeptide antibiotic biosynthesis. Arndt HD, Schoof S, Lu JY. Angew. Chem. Int. Ed. Engl. 48 6770-6773 (2009)
  9. Nocathiacin I analogues: synthesis, in vitro and in vivo biological activity of novel semi-synthetic thiazolyl peptide antibiotics. Naidu BN, Sorenson ME, Zhang Y, Kim OK, Matiskella JD, Wichtowski JA, Connolly TP, Li W, Lam KS, Bronson JJ, Pucci MJ, Clark JM, Ueda Y. Bioorg. Med. Chem. Lett. 14 5573-5577 (2004)
  10. Total synthesis of the thiazolyl peptide GE2270 A. Müller HM, Delgado O, Bach T. Angew. Chem. Int. Ed. Engl. 46 4771-4774 (2007)
  11. Combinatorial modification of natural products: synthesis and in vitro analysis of derivatives of thiazole peptide antibiotic GE2270 A: A-ring modifications. Clough J, Chen S, Gordon EM, Hackbarth C, Lam S, Trias J, White RJ, Candiani G, Donadio S, Romanò G, Ciabatti R, Jacobs JW. Bioorg. Med. Chem. Lett. 13 3409-3414 (2003)
  12. New Frontiers in Druggability. Kozakov D, Hall DR, Napoleon RL, Yueh C, Whitty A, Vajda S. J. Med. Chem. 58 9063-9088 (2015)
  13. Synthesis and antibacterial activity of nocathiacin I analogues. Naidu BN, Sorenson ME, Matiskella JD, Li W, Sausker JB, Zhang Y, Connolly TP, Lam KS, Bronson JJ, Pucci MJ, Yang H, Ueda Y. Bioorg. Med. Chem. Lett. 16 3545-3549 (2006)
  14. Synthesis, in vitro, and in vivo antibacterial activity of nocathiacin I thiol-Michael adducts. Naidu BN, Sorenson ME, Bronson JJ, Pucci MJ, Clark JM, Ueda Y. Bioorg. Med. Chem. Lett. 15 2069-2072 (2005)
  15. Concise total synthesis of the thiazolyl peptide antibiotic GE2270 A. Delgado O, Müller HM, Bach T. Chemistry 14 2322-2339 (2008)
  16. Total synthesis of antibiotics GE2270A and GE2270T. Nicolaou KC, Zou B, Dethe DH, Li DB, Chen DY. Angew. Chem. Int. Ed. Engl. 45 7786-7792 (2006)
  17. Rapid evolution in conformational space: a study of loop regions in a ubiquitous GTP binding domain. Blouin C, Butt D, Roger AJ. Protein Sci. 13 608-616 (2004)
  18. Synthesis and antibacterial activity of O-substituted nocathiacin I derivatives. Naidu BN, Sorenson ME, Hudyma T, Zheng X, Zhang Y, Bronson JJ, Pucci MJ, Clark JM, Ueda Y. Bioorg. Med. Chem. Lett. 14 3743-3746 (2004)
  19. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes. Zuurmond AM, Martien de Graaf J, Olsthoorn-Tieleman LN, van Duyl BY, Mörhle VG, Jurnak F, Mesters JR, Hilgenfeld R, Kraal B. J. Mol. Biol. 304 995-1005 (2000)
  20. Characterization of a novel plasmid-borne thiopeptide gene cluster in Staphylococcus epidermidis strain 115. Bennallack PR, Burt SR, Heder MJ, Robison RA, Griffitts JS. J. Bacteriol. 196 4344-4350 (2014)
  21. Elongation factor Tu3 (EF-Tu3) from the kirromycin producer Streptomyces ramocissimus Is resistant to three classes of EF-Tu-specific inhibitors. Olsthoorn-Tieleman LN, Palstra RJ, van Wezel GP, Bibb MJ, Pleij CW. J. Bacteriol. 189 3581-3590 (2007)
  22. Garbled messages and corrupted translations. Schneider-Poetsch T, Usui T, Kaida D, Yoshida M. Nat. Chem. Biol. 6 189-198 (2010)
  23. Synthesis of the heterocyclic core of the GE 2270 antibiotics and structure elucidation of a major degradation product. Heckmann G, Bach T. Angew. Chem. Int. Ed. Engl. 44 1199-1201 (2005)
  24. 4-Aminothiazolyl analogs of GE2270 A: design, synthesis and evaluation of imidazole analogs. LaMarche MJ, Leeds JA, Dzink-Fox J, Mullin S, Patane MA, Rann EM, Tiamfook S. Bioorg. Med. Chem. Lett. 21 3210-3215 (2011)
  25. Identification of novel inhibitors of bacterial translation elongation factors. Jayasekera MM, Onheiber K, Keith J, Venkatesan H, Santillan A, Stocking EM, Tang L, Miller J, Gomez L, Rhead B, Delcamp T, Huang S, Wolin R, Bobkova EV, Shaw KJ. Antimicrob. Agents Chemother. 49 131-136 (2005)
  26. Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue. Zhang F, Li C, Kelly WL. ACS Chem. Biol. 11 415-424 (2016)
  27. Amythiamicin D and related thiopeptides as inhibitors of the bacterial elongation factor EF-Tu: modification of the amino acid at carbon atom C2 of ring C dramatically influences activity. Gross S, Nguyen F, Bierschenk M, Sohmen D, Menzel T, Antes I, Wilson DN, Bach T. ChemMedChem 8 1954-1962 (2013)
  28. Inhibition of translation by cytotrienin A--a member of the ansamycin family. Lindqvist L, Robert F, Merrick W, Kakeya H, Fraser C, Osada H, Pelletier J. RNA 16 2404-2413 (2010)
  29. Electronic structure calculations on the thiazole-containing antibiotic thiostrepton: molecular mechanics, semi-empirical and ab initio analyses. Hang PC, Honek JF. Bioorg. Med. Chem. Lett. 15 1471-1474 (2005)
  30. Solution structures of thiopeptide antibiotics. Lewis RJ, Hughes RA, Alcaraz L, Thompson SP, Moody CJ. Chem. Commun. (Camb.) 4215-4217 (2006)
  31. Archaeal elongation factor 1alpha from Sulfolobus solfataricus interacts with the eubacterial antibiotic GE2270A. Masullo M, Cantiello P, Arcari P. Extremophiles 8 499-505 (2004)
  32. Interaction between the antibiotic tetracycline and the elongation factor 1α from the archaeon sulfolobus solfataricus. Lamberti A, Martucci NM, Ruggiero I, Arcari P, Masullo M. Chem Biol Drug Des 78 260-268 (2011)
  33. Bioinformatic Expansion and Discovery of Thiopeptide Antibiotics. Schwalen CJ, Hudson GA, Kille B, Mitchell DA. J. Am. Chem. Soc. 140 9494-9501 (2018)
  34. In vitro antibacterial activities of a thiazolyl peptide antibiotic PM2409. Pari K, Mahajan GB, Yemparala V, Kshirsagar R, Parab R, Shanbhag P, Thomas B, Manisha M, Manohar V, Sivaramakrishnan H. J. Antibiot. 68 56-59 (2015)
  35. Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Liu J, Lin Z, Li Y, Zheng Q, Chen D, Liu W. Org Biomol Chem 17 3727-3731 (2019)
  36. The eubacterial protein synthesis inhibitor pulvomycin interacts with archaeal elongation factor 1α from Sulfolobus solfataricus. Martucci NM, Lamberti A, Arcari P, Masullo M. Biochimie 94 503-509 (2012)
  37. De Novo Discovery of Thiopeptide Pseudo-natural Products Acting as Potent and Selective TNIK Kinase Inhibitors. Vinogradov AA, Zhang Y, Hamada K, Chang JS, Okada C, Nishimura H, Terasaka N, Goto Y, Ogata K, Sengoku T, Onaka H, Suga H. J Am Chem Soc 144 20332-20341 (2022)
  38. Engineered EF-Tu and tRNA-Based FRET Screening Assay to Find Inhibitors of Protein Synthesis in Bacteria. Bhatt R, Chudaev M, Mandecki W, Goldman E. Assay Drug Dev Technol 16 212-221 (2018)