1d4a Citations

Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release.

Proc Natl Acad Sci U S A 97 3177-82 (2000)
Related entries: 1dxo, 1dxq

Cited: 116 times
EuropePMC logo PMID: 10706635

Abstract

NAD(P)H/quinone acceptor oxidoreductase (QR1, NQO1, formerly DT-diaphorase; EC ) protects animal cells from the deleterious and carcinogenic effects of quinones and other electrophiles. In this paper we report the apoenzyme structures of human (at 1.7-A resolution) and mouse (2.8 A) QR1 and the complex of the human enzyme with the substrate duroquinone (2.5 A) (2,3,5, 6-tetramethyl-p-benzoquinone). In addition to providing a description and rationale of the structural and catalytic differences among several species, these structures reveal the changes that accompany substrate or cofactor (NAD) binding and release. Tyrosine-128 and the loop spanning residues 232-236 close the binding site, partially occupying the space left vacant by the departing molecule (substrate or cofactor). These changes highlight the exquisite control of access to the catalytic site that is required by the ping-pong mechanism in which, after reducing the flavin, NAD(P)(+) leaves the catalytic site and allows substrate to bind at the vacated position. In the human QR1-duroquinone structure one ring carbon is significantly closer to the flavin N5, suggesting a direct hydride transfer to this atom.

Reviews - 1d4a mentioned but not cited (1)

  1. Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. Salido E, Timson DJ, Betancor-Fernández I, Palomino-Morales R, Anoz-Carbonell E, Pacheco-García JL, Medina M, Pey AL. J Pers Med 12 747 (2022)

Articles - 1d4a mentioned but not cited (29)

  1. Deamidation of human proteins. Robinson NE, Robinson AB. Proc Natl Acad Sci U S A 98 12409-12413 (2001)
  2. Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Faig M, Bianchet MA, Talalay P, Chen S, Winski S, Ross D, Amzel LM. Proc Natl Acad Sci U S A 97 3177-3182 (2000)
  3. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. Petrova NV, Wu CH. BMC Bioinformatics 7 312 (2006)
  4. On the molecular discrimination between adenine and guanine by proteins. Nobeli I, Laskowski RA, Valdar WS, Thornton JM. Nucleic Acids Res 29 4294-4309 (2001)
  5. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). Winger JA, Hantschel O, Superti-Furga G, Kuriyan J. BMC Struct Biol 9 7 (2009)
  6. Collapse of the native structure caused by a single amino acid exchange in human NAD(P)H:quinone oxidoreductase(1.). Lienhart WD, Gudipati V, Uhl MK, Binter A, Pulido SA, Saf R, Zangger K, Gruber K, Macheroux P. FEBS J 281 4691-4704 (2014)
  7. Recognition of enzymes lacking bound cofactor by protein quality control. Martínez-Limón A, Alriquet M, Lang WH, Calloni G, Wittig I, Vabulas RM. Proc Natl Acad Sci U S A 113 12156-12161 (2016)
  8. Human NAD(P)H:quinone oxidoreductase type I (hNQO1) activation of quinone propionic acid trigger groups. Mendoza MF, Hollabaugh NM, Hettiarachchi SU, McCarley RL. Biochemistry 51 8014-8026 (2012)
  9. Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands. Medina-Carmona E, Palomino-Morales RJ, Fuchs JE, Padín-Gonzalez E, Mesa-Torres N, Salido E, Timson DJ, Pey AL. Sci Rep 6 20331 (2016)
  10. Redox modulation of NQO1. Siegel D, Dehn DD, Bokatzian SS, Quinn K, Backos DS, Di Francesco A, Bernier M, Reisdorph N, de Cabo R, Ross D. PLoS One 13 e0190717 (2018)
  11. Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. Agarwal R, Bonanno JB, Burley SK, Swaminathan S. Acta Crystallogr D Biol Crystallogr 62 383-391 (2006)
  12. Curcumin Derivatives Verify the Essentiality of ROS Upregulation in Tumor Suppression. Nakamae I, Morimoto T, Shima H, Shionyu M, Fujiki H, Yoneda-Kato N, Yokoyama T, Kanaya S, Kakiuchi K, Shirai T, Meiyanto E, Kato JY. Molecules 24 E4067 (2019)
  13. Site-to-site interdomain communication may mediate different loss-of-function mechanisms in a cancer-associated NQO1 polymorphism. Medina-Carmona E, Neira JL, Salido E, Fuchs JE, Palomino-Morales R, Timson DJ, Pey AL. Sci Rep 7 44532 (2017)
  14. Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Lestari B, Nakamae I, Yoneda-Kato N, Morimoto T, Kanaya S, Yokoyama T, Shionyu M, Shirai T, Meiyanto E, Kato JY. Sci Rep 9 14867 (2019)
  15. The novel targets of DL-3-n-butylphthalide predicted by similarity ensemble approach in combination with molecular docking study. Wang Y, Qi W, Zhang L, Ying Z, Sha O, Li C, Lü L, Chen X, Li Z, Niu F, Xue F, Wang D, Ng TB, Zhang L. Quant Imaging Med Surg 7 532-536 (2017)
  16. Phylogenomic Analyses of Snodgrassella Isolates from Honeybees and Bumblebees Reveal Taxonomic and Functional Diversity. Cornet L, Cleenwerck I, Praet J, Leonard RR, Vereecken NJ, Michez D, Smagghe G, Baurain D, Vandamme P. mSystems 7 e0150021 (2022)
  17. A direct interaction between NQO1 and a chemotherapeutic dimeric naphthoquinone. Pidugu LS, Mbimba JC, Ahmad M, Pozharski E, Sausville EA, Emadi A, Toth EA. BMC Struct Biol 16 1 (2016)
  18. Naturally-Occurring Rare Mutations Cause Mild to Catastrophic Effects in the Multifunctional and Cancer-Associated NQO1 Protein. Pacheco-García JL, Cano-Muñoz M, Sánchez-Ramos I, Salido E, Pey AL. J Pers Med 10 E207 (2020)
  19. A convenient protein library for spectroscopic calibrations. De Meutter J, Goormaghtigh E. Comput Struct Biotechnol J 18 1864-1876 (2020)
  20. Arginine and Lysine interactions with π residues in metalloproteins. Anitha P, Sivasakthi V, Lavanya P, Bag S, Kumar KM, Anbarasu A, Ramaiah S. Bioinformation 8 820-826 (2012)
  21. Effect of naturally-occurring mutations on the stability and function of cancer-associated NQO1: Comparison of experiments and computation. Pacheco-Garcia JL, Cagiada M, Tienne-Matos K, Salido E, Lindorff-Larsen K, L Pey A. Front Mol Biosci 9 1063620 (2022)
  22. Preparation and Cytotoxic Evaluation of PGV-1 Derivative, CCA-1.1, as a New Curcumin Analog with Improved-Physicochemical and Pharmacological Properties. Utomo RY, Wulandari F, Novitasari D, Lestari B, Susidarti RA, Jenie RI, Kato JY, Sardjiman S, Meiyanto E. Adv Pharm Bull 12 603-612 (2022)
  23. Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family. Deshmukh FK, Ben-Nissan G, Olshina MA, Füzesi-Levi MG, Polkinghorn C, Arkind G, Leushkin Y, Fainer I, Fleishman SJ, Tawfik D, Sharon M. Nat Commun 14 3126 (2023)
  24. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  25. Highly Accessible Computational Prediction and In Vivo/In Vitro Experimental Validation: Novel Synthetic Phenyl Ketone Derivatives as Promising Agents against NAFLD via Modulating Oxidoreductase Activity. Qiao Y, Deng H, Liu L, Liu S, Ren L, Shi C, Chen X, Guan L, Liu W, Li Z, Li Y. Oxid Med Cell Longev 2023 3782230 (2023)
  26. Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1. Siegel D, Harris PS, Michel CR, de Cabo R, Fritz KS, Ross D. Front Pharmacol 13 1015642 (2022)
  27. AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues. Ma TP, Izrael-Tomasevic A, Mroue R, Budayeva H, Malhotra S, Raisner R, Evangelista M, Rose CM, Kirkpatrick DS, Yu K. J Proteome Res 22 2218-2231 (2023)
  28. Discovery of New Protein Targets of BPA Analogs and Derivatives Associated with Noncommunicable Diseases: A Virtual High-Throughput Screening. Montes-Grajales D, Morelos-Cortes X, Olivero-Verbel J. Environ Health Perspect 129 37009 (2021)
  29. Skullcapflavone II, a novel NQO1 inhibitor, alleviates aristolochic acid I-induced liver and kidney injury in mice. Dong YP, Chen SZ, He HS, Sun ZR, Jiang LX, Gu YQ, Zhang Y, Feng F, Chen C, Fan ZC, Chen XF, Wen W, Wang HY. Acta Pharmacol Sin 44 1429-1441 (2023)


Reviews citing this publication (21)

  1. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Dinkova-Kostova AT, Talalay P. Arch Biochem Biophys 501 116-123 (2010)
  2. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Siegel D, Yan C, Ross D. Biochem Pharmacol 83 1033-1040 (2012)
  3. Carbonyl reductases: the complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Oppermann U. Annu Rev Pharmacol Toxicol 47 293-322 (2007)
  4. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch. Ross D, Siegel D. Front Physiol 8 595 (2017)
  5. A systems biology perspective on Nrf2-mediated antioxidant response. Zhang Q, Pi J, Woods CG, Andersen ME. Toxicol Appl Pharmacol 244 84-97 (2010)
  6. Quinone reductases multitasking in the metabolic world. Ross D. Drug Metab Rev 36 639-654 (2004)
  7. The diverse functionality of NQO1 and its roles in redox control. Ross D, Siegel D. Redox Biol 41 101950 (2021)
  8. The plasma membrane redox system in aging. Hyun DH, Hernandez JO, Mattson MP, de Cabo R, de Cabo R. Ageing Res Rev 5 209-220 (2006)
  9. Natural and synthetic quinones and their reduction by the quinone reductase enzyme NQO1: from synthetic organic chemistry to compounds with anticancer potential. Colucci MA, Moody CJ, Couch GD. Org Biomol Chem 6 637-656 (2008)
  10. Structure-function studies of DT-diaphorase (NQO1) and NRH: quinone oxidoreductase (NQO2). Chen S, Wu K, Knox R. Free Radic Biol Med 29 276-284 (2000)
  11. Current molecular design of intelligent drugs and imaging probes targeting tumor-specific microenvironments. Tanabe K, Zhang Z, Ito T, Hatta H, Nishimoto S. Org Biomol Chem 5 3745-3757 (2007)
  12. NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places. Pey AL, Megarity CF, Timson DJ. Biosci Rep 39 BSR20180459 (2019)
  13. Plasma membrane electron pathways and oxidative stress. Lüthje S, Möller B, Perrineau FC, Wöltje K. Antioxid Redox Signal 18 2163-2183 (2013)
  14. Azoreductases in drug metabolism. Ryan A. Br J Pharmacol 174 2161-2173 (2017)
  15. Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: Experimental and theoretical approaches. Stiborová M, Frei E, Schmeiser HH, Arlt VM, Martínek V. Int J Mol Sci 15 10271-10295 (2014)
  16. Functions and distribution of NQO1 in human bone marrow: potential clues to benzene toxicity. Ross D. Chem Biol Interact 153-154 137-146 (2005)
  17. Roles of NAD(P)H:quinone Oxidoreductase 1 in Diverse Diseases. Lee WS, Ham W, Kim J. Life (Basel) 11 1301 (2021)
  18. Evolutionary Divergent Suppressor Mutations in Conformational Diseases. Mesa-Torres N, Betancor-Fernández I, Oppici E, Cellini B, Salido E, Pey AL. Genes (Basel) 9 E352 (2018)
  19. Review on NAD(P)H dehydrogenase quinone 1 (NQO1) pathway. Preethi S, Arthiga K, Patil AB, Spandana A, Jain V. Mol Biol Rep 49 8907-8924 (2022)
  20. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Int J Mol Sci 22 8534 (2021)
  21. Heterocyclic Iminoquinones and Quinones from the National Cancer Institute (NCI, USA) COMPARE Analysis. Haji N, Faizi M, Koutentis PA, Carty MP, Aldabbagh F. Molecules 28 5202 (2023)

Articles citing this publication (65)

  1. Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. Galkin A, Brandt U. J Biol Chem 280 30129-30135 (2005)
  2. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Bottoms CA, Smith PE, Tanner JJ. Protein Sci 11 2125-2137 (2002)
  3. Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species. King MS, Sharpley MS, Hirst J. Biochemistry 48 2053-2062 (2009)
  4. Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins a, C, and e. Boddupalli S, Mein JR, Lakkanna S, James DR. Front Genet 3 7 (2012)
  5. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Shrader WD, Amagata A, Barnes A, Enns GM, Hinman A, Jankowski O, Kheifets V, Komatsuzaki R, Lee E, Mollard P, Murase K, Sadun AA, Thoolen M, Wesson K, Miller G. Bioorg Med Chem Lett 21 3693-3698 (2011)
  6. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Singh H, Arentson BW, Becker DF, Tanner JJ. Proc Natl Acad Sci U S A 111 3389-3394 (2014)
  7. X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T. Structure 9 419-429 (2001)
  8. KTN (RCK) domains regulate K+ channels and transporters by controlling the dimer-hinge conformation. Roosild TP, Castronovo S, Miller S, Li C, Rasmussen T, Bartlett W, Gunasekera B, Choe S, Booth IR. Structure 17 893-903 (2009)
  9. The human carcinogen aristolochic acid i is activated to form DNA adducts by human NAD(P)H:quinone oxidoreductase without the contribution of acetyltransferases or sulfotransferases. Stiborová M, Mareš J, Frei E, Arlt VM, Martínek V, Schmeiser HH. Environ Mol Mutagen 52 448-459 (2011)
  10. Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification. Sollner S, Nebauer R, Ehammer H, Prem A, Deller S, Palfey BA, Daum G, Macheroux P. FEBS J 274 1328-1339 (2007)
  11. Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Liu ZJ, Chen H, Shaw N, Hopper SL, Chen L, Chen S, Cerniglia CE, Wang BC. Arch Biochem Biophys 463 68-77 (2007)
  12. Two-electron reduction of quinones by rat liver NAD(P)H:quinone oxidoreductase: quantitative structure-activity relationships. Anusevicius Z, Sarlauskas J, Cenas N. Arch Biochem Biophys 404 254-262 (2002)
  13. Mechanism of NAD(P)H:quinone reductase: Ab initio studies of reduced flavin. Cavelier G, Amzel LM. Proteins 43 420-432 (2001)
  14. Inhibitors of NQO1: identification of compounds more potent than dicoumarol without associated off-target effects. Scott KA, Barnes J, Whitehead RC, Stratford IJ, Nolan KA. Biochem Pharmacol 81 355-363 (2011)
  15. Quinone reductase 2 is a catechol quinone reductase. Fu Y, Buryanovskyy L, Zhang Z. J Biol Chem 283 23829-23835 (2008)
  16. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. Ito K, Nakanishi M, Lee WC, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M. J Biol Chem 283 13889-13896 (2008)
  17. Modulator of drug activity B from Escherichia coli: crystal structure of a prokaryotic homologue of DT-diaphorase. Adams MA, Jia Z. J Mol Biol 359 455-465 (2006)
  18. Mechanism of flavin reduction and oxidation in the redox-sensing quinone reductase Lot6p from Saccharomyces cerevisiae. Sollner S, Deller S, Macheroux P, Palfey BA. Biochemistry 48 8636-8643 (2009)
  19. Novel quinolinequinone antitumor agents: structure-metabolism studies with NAD(P)H:quinone oxidoreductase (NQO1). Fryatt T, Pettersson HI, Gardipee WT, Bray KC, Green SJ, Slawin AM, Beall HD, Moody CJ. Bioorg Med Chem 12 1667-1687 (2004)
  20. Coenzyme Q1 redox metabolism during passage through the rat pulmonary circulation and the effect of hyperoxia. Audi SH, Merker MP, Krenz GS, Ahuja T, Roerig DL, Bongard RD. J Appl Physiol (1985) 105 1114-1126 (2008)
  21. Mechanistic and structural basis for inhibition of thymidylate synthase ThyX. Basta T, Boum Y, Briffotaux J, Becker HF, Lamarre-Jouenne I, Lambry JC, Skouloubris S, Liebl U, Graille M, van Tilbeurgh H, Myllykallio H. Open Biol 2 120120 (2012)
  22. Quinone compounds regulate the level of ROS production by the NADPH oxidase Nox4. Nguyen MV, Lardy B, Rousset F, Hazane-Puch F, Zhang L, Trocmé C, Serrander L, Krause KH, Morel F. Biochem Pharmacol 85 1644-1654 (2013)
  23. Modifying rates of reductive elimination of leaving groups from indolequinone prodrugs: a key factor in controlling hypoxia-selective drug release. Everett SA, Swann E, Naylor MA, Stratford MR, Patel KB, Tian N, Newman RG, Vojnovic B, Moody CJ, Wardman P. Biochem Pharmacol 63 1629-1639 (2002)
  24. Enhanced vulnerability of human proteins towards disease-associated inactivation through divergent evolution. Medina-Carmona E, Fuchs JE, Gavira JA, Mesa-Torres N, Neira JL, Salido E, Palomino-Morales R, Burgos M, Timson DJ, Pey AL. Hum Mol Genet 26 3531-3544 (2017)
  25. Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modelling. Schmid R, Gerloff DL. FEBS Lett 578 163-168 (2004)
  26. Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia. Merker MP, Audi SH, Lindemer BJ, Krenz GS, Bongard RD. Am J Physiol Lung Cell Mol Physiol 293 L809-19 (2007)
  27. An efficient two-photon fluorescent probe for human NAD(P)H:quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Kwon N, Cho MK, Park SJ, Kim D, Nam SJ, Cui L, Kim HM, Yoon J. Chem Commun (Camb) 53 525-528 (2017)
  28. A novel plasma membrane quinone reductase and NAD(P)H:quinone oxidoreductase 1 are upregulated by serum withdrawal in human promyelocytic HL-60 cells. Forthoffer N, Gómez-Díaz C, Bello RI, Burón MI, Martín SF, Rodríguez-Aguilera JC, Navas P, Villalba JM. J Bioenerg Biomembr 34 209-219 (2002)
  29. In silico identification and biochemical characterization of novel inhibitors of NQO1. Nolan KA, Timson DJ, Stratford IJ, Bryce RA. Bioorg Med Chem Lett 16 6246-6254 (2006)
  30. Indolequinone antitumour agents: correlation between quinone structure and rate of metabolism by recombinant human NAD(P)H:quinone oxidoreductase. Newsome JJ, Swann E, Hassani M, Bray KC, Slawin AM, Beall HD, Moody CJ. Org Biomol Chem 5 1629-1640 (2007)
  31. NAD(P)H:quinone oxidoreductase 1 Arg139Trp and Pro187Ser polymorphisms imbalance estrogen metabolism towards DNA adduct formation in human mammary epithelial cells. Singh S, Zahid M, Saeed M, Gaikwad NW, Meza JL, Cavalieri EL, Rogan EG, Chakravarti D. J Steroid Biochem Mol Biol 117 56-66 (2009)
  32. Synthesis and evaluation of (±)-dunnione and its ortho-quinone analogues as substrates for NAD(P)H:quinone oxidoreductase 1 (NQO1). Bian J, Xu L, Deng B, Qian X, Fan J, Yang X, Liu F, Xu X, Guo X, Li X, Sun H, You Q, Zhang X. Bioorg Med Chem Lett 25 1244-1248 (2015)
  33. Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Pacheco-Garcia JL, Anoz-Carbonell E, Vankova P, Kannan A, Palomino-Morales R, Mesa-Torres N, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Redox Biol 46 102112 (2021)
  34. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Anoz-Carbonell E, Timson DJ, Pey AL, Medina M. Antioxidants (Basel) 9 E772 (2020)
  35. 2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel L-shaped ortho-quinone substrates for NAD(P)H:quinone oxidoreductase (NQO1). Bian J, Deng B, Xu L, Xu X, Wang N, Hu T, Yao Z, Du J, Yang L, Lei Y, Li X, Sun H, Zhang X, You Q. Eur J Med Chem 82 56-67 (2014)
  36. Iron (III) reduction: A novel activity of the human NAD(P)H:oxidoreductase. Onyenwoke RU, Wiegel J. Biochem Biophys Res Commun 353 389-393 (2007)
  37. 3-substituted-5-aziridinyl-1-methylindole-4,7-diones as NQO1-directed antitumour agents: mechanism of activation and cytotoxicity in vitro. Jaffar M, Phillips RM, Williams KJ, Mrema I, Cole C, Wind NS, Ward TH, Stratford IJ, Patterson AV. Biochem Pharmacol 66 1199-1206 (2003)
  38. A Dynamic Core in Human NQO1 Controls the Functional and Stability Effects of Ligand Binding and Their Communication across the Enzyme Dimer. Vankova P, Salido E, Timson DJ, Man P, Pey AL. Biomolecules 9 E728 (2019)
  39. Human NAD(P)H:quinone oxidoreductase inhibition by flavonoids in living cells. Lee YY, Westphal AH, de Haan LH, Aarts JM, Rietjens IM, van Berkel WJ. Free Radic Biol Med 39 257-265 (2005)
  40. Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis. Li Q, Karim AF, Ding X, Das B, Dobrowolski C, Gibson RM, Quiñones-Mateu ME, Karn J, Rojas RE. Sci Rep 6 27566 (2016)
  41. Relationships between metabolic and non-metabolic susceptibility factors in benzene toxicity. Ross D, Zhou H. Chem Biol Interact 184 222-228 (2010)
  42. Epilobium hirsutum alters xenobiotic metabolizing CYP1A1, CYP2E1, NQO1 and GPx activities, mRNA and protein levels in rats. Karakurt S, Semiz A, Celik G, Gencler-Ozkan AM, Sen A, Adali O. Pharm Biol 51 650-658 (2013)
  43. β-phenethylamine--a phenylalanine derivative in brain--contributes to oxidative stress by inhibiting mitochondrial complexes and DT-diaphorase: an in silico study. Mazumder MK, Paul R, Borah A. CNS Neurosci Ther 19 596-602 (2013)
  44. Alkynyloxy derivatives of 5,8-quinolinedione: Synthesis, in vitro cytotoxicity studies and computational molecular modeling with NAD(P)H:Quinone oxidoreductase 1. Kadela-Tomanek M, Jastrzębska M, Pawełczak B, Bębenek E, Chrobak E, Latocha M, Książek M, Kusz J, Boryczka S. Eur J Med Chem 126 969-982 (2017)
  45. The Ontogeny and Population Variability of Human Hepatic NADPH Dehydrogenase Quinone Oxido-Reductase 1 (NQO1). Rougée LR, Riches Z, Berman JM, Collier AC. Drug Metab Dispos 44 967-974 (2016)
  46. The crystal structure of Pseudomonas putida azoreductase - the active site revisited. Gonçalves AM, Mendes S, de Sanctis D, Martins LO, Bento I. FEBS J 280 6643-6657 (2013)
  47. Cancer-associated variants of human NQO1: impacts on inhibitor binding and cooperativity. Megarity CF, Timson DJ. Biosci Rep 39 BSR20191874 (2019)
  48. Towards a modern definition of vitamin E-evidence for a quinone hypothesis. Shrader WD, Amagata A, Barnes A, Hinman A, Jankowski O, Lee E, Kheifets V, Komatsuzaki R, Mollard P, Murase K, Rioux P, Wesson K, Miller G. Bioorg Med Chem Lett 22 391-395 (2012)
  49. Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations. Pacheco-Garcia JL, Loginov DS, Anoz-Carbonell E, Vankova P, Palomino-Morales R, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Antioxidants (Basel) 11 1110 (2022)
  50. Eco-Friendly Synthesis, Biological Evaluation, and In Silico Molecular Docking Approach of Some New Quinoline Derivatives as Potential Antioxidant and Antibacterial Agents. El-Saghier AM, El-Naggar M, Hussein AHM, El-Adasy AA, Olish M, Abdelmonsef AH. Front Chem 9 679967 (2021)
  51. Evidence for NQO1 and NQO2 catalyzed reduction of ortho- and para-quinone methides. Kucera HR, Livingstone M, Moscoso CG, Gaikwad NW. Free Radic Res 47 1016-1026 (2013)
  52. Triazoloacridin-6-ones as novel inhibitors of the quinone oxidoreductases NQO1 and NQO2. Nolan KA, Humphries MP, Barnes J, Doncaster JR, Caraher MC, Tirelli N, Bryce RA, Whitehead RC, Stratford IJ. Bioorg Med Chem 18 696-706 (2010)
  53. Coenzyme Q(1) as a probe for mitochondrial complex I activity in the intact perfused hyperoxia-exposed wild-type and Nqo1-null mouse lung. Bongard RD, Myers CR, Lindemer BJ, Baumgardt S, Gonzalez FJ, Merker MP. Am J Physiol Lung Cell Mol Physiol 302 L949-58 (2012)
  54. Lycopene Inhibits IL-6 Expression by Upregulating NQO1 and HO-1 via Activation of Nrf2 in Ethanol/Lipopolysaccharide-Stimulated Pancreatic Acinar Cells. Lee J, Lim JW, Kim H. Antioxidants (Basel) 11 519 (2022)
  55. Naphtho[1',2':4,5]imidazo[1,2-a]pyridine-5,6-diones: Synthesis, enzymatic reduction and cytotoxic activity. Šarlauskas J, Pečiukaitytė-Alksnė M, Misevičienė L, Marozienė A, Polmickaitė E, Staniulytė Z, Čėnas N, Anusevičius Ž. Bioorg Med Chem Lett 26 512-517 (2016)
  56. Rational design of pyrrolo. Huang X, Suleman A, Skibo EB. Bioorg Chem 28 324-337 (2000)
  57. Synthesis and in vitro evaluation of radioiodinated indolequinones targeting NAD(P)H: quinone oxidoreductase 1 for internal radiation therapy. Sasaki J, Sano K, Hagimori M, Yoshikawa M, Maeda M, Mukai T. Bioorg Med Chem 22 6039-6046 (2014)
  58. Synthesis, biological evaluation and in silico molecular docking of novel 1-hydroxy-naphthyl substituted heterocycles. El-Desoky EI, Keshk EM, El-Sawi AA, Abozeid MA, Abouzeid LA, Abdel-Rahman AH. Saudi Pharm J 26 852-859 (2018)
  59. Molecular cloning and characterization of an NADPH quinone oxidoreductase from Kluyveromyces marxianus. Kim WH, Chung JH, Back JH, Choi J, Cha JH, Koh HY, Han YS. J Biochem Mol Biol 36 442-449 (2003)
  60. Quinone oxidoreductase-2-mediated prodrug cancer therapy. Middleton MR, Knox R, Cattell E, Oppermann U, Midgley R, Ali R, Auton T, Agarwal R, Anderson D, Sarker D, Judson I, Osawa T, Spanswick VJ, Davies S, Hartley JA, Kerr DJ. Sci Transl Med 2 40ra50 (2010)
  61. Aerobic Cytotoxicity of Aromatic N-Oxides: The Role of NAD(P)H:Quinone Oxidoreductase (NQO1). Nemeikaitė-Čėnienė A, Šarlauskas J, Misevičienė L, Marozienė A, Jonušienė V, Lesanavičius M, Čėnas N. Int J Mol Sci 21 E8754 (2020)
  62. Analysis of cataract-regulated genes using chemical DNA damage induction in a rat ex vivo model. Yamaoka R, Kanada F, Nagaya M, Takashima M, Takamura Y, Inatani M, Oki M. PLoS One 17 e0273456 (2022)
  63. Genetic evidence for NAD(P)H:quinone oxidoreductase 1-catalyzed quinone reduction on passage through the mouse pulmonary circulation. Lindemer BJ, Bongard RD, Hoffmann R, Baumgardt S, Gonzalez FJ, Merker MP. Am J Physiol Lung Cell Mol Physiol 300 L773-80 (2011)
  64. Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme. Doppler D, Sonker M, Egatz-Gomez A, Grieco A, Zaare S, Jernigan R, Meza-Aguilar JD, Rabbani MT, Manna A, Alvarez RC, Karpos K, Cruz Villarreal J, Nelson G, Yang JH, Carrion J, Morin K, Ketawala GK, Pey AL, Ruiz-Fresneda MA, Pacheco-Garcia JL, Hermoso JA, Nazari R, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Lisova S, Mariani V, Boutet S, Fromme R, Grant TD, Botha S, Fromme P, Kirian RA, Martin-Garcia JM, Ros A. Lab Chip 23 3016-3033 (2023)
  65. Synthesis, antioxidant activity, molecular docking and ADME studies of novel pyrrole-benzimidazole derivatives. Zengin Karadayi F, Başaran R, Kişla MM, Can Eke B, Ateş Alagöz Z. Turk J Chem 46 890-902 (2022)


Related citations provided by authors (3)

  1. Structure and Mechanism of Cytosolic Quinone Reductase. Bianchet MA, Foster C, Faig M, Talalay P, Amzel LM Biochem. Soc. Trans. 27 610-615 (1999)
  2. The Three-Dimensional Structure of NAD(P)H:quinone Reductase, a Flavoprotein Involved in Cancer Chemoprotection and Chemotherapy: Mechanism of Two-Electron Reduction. Li R, Bianchet MA, Talalay P, Amzel LM Proc. Natl. Acad. Sci. U.S.A. 92 8846-8850 (1995)
  3. Crystal Structure of Human Quinone Reductase type 2, a Metalloprotein. Foster C, Bianchet MA, Talalay P, Zhao Q, Amzel LM Biochemistry 38 9881-9886 (1999)