1d2r Citations

2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site.

Protein Sci 9 218-31 (2000)
Cited: 58 times
EuropePMC logo PMID: 10716174

Abstract

The crystal structure of ligand-free tryptophanyl-tRNA synthetase (TrpRS) was solved at 2.9 A using a combination of molecular replacement and maximum-entropy map/phase improvement. The dimeric structure (R = 23.7, Rfree = 26.2) is asymmetric, unlike that of the TrpRS tryptophanyl-5'AMP complex (TAM; Doublié S, Bricogne G, Gilmore CJ, Carter CW Jr, 1995, Structure 3:17-31). In agreement with small-angle solution X-ray scattering experiments, unliganded TrpRS has a conformation in which both monomers open, leaving only the tryptophan-binding regions of their active sites intact. The amino terminal alphaA-helix, TIGN, and KMSKS signature sequences, and the distal helical domain rotate as a single rigid body away from the dinucleotide-binding fold domain, opening the AMP binding site, seen in the TAM complex, into two halves. Comparison of side-chain packing in ligand-free TrpRS and the TAM complex, using identification of nonpolar nuclei (Ilyin VA, 1994, Protein Eng 7:1189-1195), shows that significant repacking occurs between three relatively stable core regions, one of which acts as a bearing between the other two. These domain rearrangements provide a new structural paradigm that is consistent in detail with the "induced-fit" mechanism proposed for TyrRS by Fersht et al. (Fersht AR, Knill-Jones JW, Beduelle H, Winter G, 1988, Biochemistry 27:1581-1587). Coupling of ATP binding determinants associated with the two catalytic signature sequences to the helical domain containing the presumptive anticodon-binding site provides a mechanism to coordinate active-site chemistry with relocation of the major tRNA binding determinants.

Reviews - 1d2r mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1d2r mentioned but not cited (9)

  1. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. Richter F, Blomberg R, Khare SD, Kiss G, Kuzin AP, Smith AJ, Gallaher J, Pianowski Z, Helgeson RC, Grjasnow A, Xiao R, Seetharaman J, Su M, Vorobiev S, Lew S, Forouhar F, Kornhaber GJ, Hunt JF, Montelione GT, Tong L, Houk KN, Hilvert D, Baker D. J Am Chem Soc 134 16197-16206 (2012)
  2. Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based. Williams TL, Yin YW, Carter CW. J Biol Chem 291 255-265 (2016)
  3. An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase. Khan S, Garg A, Sharma A, Camacho N, Picchioni D, Saint-Léger A, Ribas de Pouplana L, Yogavel M, Sharma A. PLoS One 8 e66224 (2013)
  4. Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations. Laowanapiban P, Kapustina M, Vonrhein C, Delarue M, Koehl P, Carter CW. Proc Natl Acad Sci U S A 106 1790-1795 (2009)
  5. ResBoost: characterizing and predicting catalytic residues in enzymes. Alterovitz R, Arvey A, Sankararaman S, Dallett C, Freund Y, Sjölander K. BMC Bioinformatics 10 197 (2009)
  6. Structure of a tryptophanyl-tRNA synthetase containing an iron-sulfur cluster. Han GW, Yang XL, McMullan D, Chong YE, Krishna SS, Rife CL, Weekes D, Brittain SM, Abdubek P, Ambing E, Astakhova T, Axelrod HL, Carlton D, Caruthers J, Chiu HJ, Clayton T, Duan L, Feuerhelm J, Grant JC, Grzechnik SK, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kumar A, Marciano D, Miller MD, Morse AT, Nigoghossian E, Okach L, Paulsen J, Reyes R, van den Bedem H, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Elsliger MA, Schimmel P, Wilson IA. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 1326-1334 (2010)
  7. FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures. Egbert M, Jones G, Collins MR, Kozakov D, Vajda S. J Mol Biol 434 167587 (2022)
  8. 'Hot' macromolecular crystals. Koclega KD, Chruszcz M, Zimmerman MD, Bujacz G, Minor W. Cryst Growth Des 10 580 (2009)
  9. Structural insights into the specific interaction between Geobacillus stearothermophilus tryptophanyl-tRNA synthetase and antimicrobial Chuangxinmycin. Fan S, Lv G, Feng X, Wu G, Jin Y, Yan M, Yang Z. J Biol Chem 298 101580 (2022)


Reviews citing this publication (8)

  1. tRNA synthetase: tRNA aminoacylation and beyond. Pang YL, Poruri K, Martinis SA. Wiley Interdiscip Rev RNA 5 461-480 (2014)
  2. Breaking symmetry in protein dimers: designs and functions. Brown JH. Protein Sci 15 1-13 (2006)
  3. Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems. Bonnefond L, Giegé R, Rudinger-Thirion J. Biochimie 87 873-883 (2005)
  4. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Jin M. Exp Mol Med 51 1-10 (2019)
  5. Architecture and metamorphosis. Guo M, Yang XL. Top Curr Chem 344 89-118 (2014)
  6. High-Dimensional Mutant and Modular Thermodynamic Cycles, Molecular Switching, and Free Energy Transduction. Carter CW. Annu Rev Biophys 46 433-453 (2017)
  7. Interdomain interactions in oligomeric enzymes: creation of asymmetry in homo-oligomers and role in metabolite channeling between active centers of hetero-oligomers. Nagradova NK. FEBS Lett 487 327-332 (2001)
  8. Structural basis for amino acid and tRNA recognition by class I aminoacyl-tRNA synthetases. Nureki O, Fukai S, Sekine S, Shimada A, Terada T, Nakama T, Shirouzu M, Vassylyev DG, Yokoyama S. Cold Spring Harb Symp Quant Biol 66 167-173 (2001)

Articles citing this publication (40)

  1. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. Cusack S, Yaremchuk A, Tukalo M. EMBO J 19 2351-2361 (2000)
  2. Non-hydrogen bond interactions involving the methionine sulfur atom. Pal D, Chakrabarti P. J Biomol Struct Dyn 19 115-128 (2001)
  3. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Zhang Z, Alfonta L, Tian F, Bursulaya B, Uryu S, King DS, Schultz PG. Proc Natl Acad Sci U S A 101 8882-8887 (2004)
  4. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Yang XL, Skene RJ, McRee DE, Schimmel P. Proc Natl Acad Sci U S A 99 15369-15374 (2002)
  5. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations. Retailleau P, Huang X, Yin Y, Hu M, Weinreb V, Vachette P, Vonrhein C, Bricogne G, Roversi P, Ilyin V, Carter CW. J Mol Biol 325 39-63 (2003)
  6. Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. Newberry KJ, Hou YM, Perona JJ. EMBO J 21 2778-2787 (2002)
  7. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine. Zhang Y, Wang L, Schultz PG, Wilson IA. Protein Sci 14 1340-1349 (2005)
  8. Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. Yang XL, Otero FJ, Ewalt KL, Liu J, Swairjo MA, Köhrer C, RajBhandary UL, Skene RJ, McRee DE, Schimmel P. EMBO J 25 2919-2929 (2006)
  9. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Shen N, Guo L, Yang B, Jin Y, Ding J. Nucleic Acids Res 34 3246-3258 (2006)
  10. The crystal structure of E. coli pantothenate synthetase confirms it as a member of the cytidylyltransferase superfamily. von Delft F, Lewendon A, Dhanaraj V, Blundell TL, Abell C, Smith AG. Structure 9 439-450 (2001)
  11. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit. Kapustina M, Carter CW. J Mol Biol 362 1159-1180 (2006)
  12. Functional and crystal structure analysis of active site adaptations of a potent anti-angiogenic human tRNA synthetase. Yang XL, Guo M, Kapoor M, Ewalt KL, Otero FJ, Skene RJ, McRee DE, Schimmel P. Structure 15 793-805 (2007)
  13. tRNA-dependent active site assembly in a class I aminoacyl-tRNA synthetase. Sherlin LD, Perona JJ. Structure 11 591-603 (2003)
  14. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5' tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases. Retailleau P, Weinreb V, Hu M, Carter CW. J Mol Biol 369 108-128 (2007)
  15. A conformational transition state accompanies tryptophan activation by B. stearothermophilus tryptophanyl-tRNA synthetase. Kapustina M, Weinreb V, Li L, Kuhlman B, Carter CW. Structure 15 1272-1284 (2007)
  16. Acetate-dependent tRNA acetylation required for decoding fidelity in protein synthesis. Taniguchi T, Miyauchi K, Sakaguchi Y, Yamashita S, Soma A, Tomita K, Suzuki T. Nat Chem Biol 14 1010-1020 (2018)
  17. Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states. Shen N, Zhou M, Yang B, Yu Y, Dong X, Ding J. Nucleic Acids Res 36 1288-1299 (2008)
  18. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling. Li L, Carter CW. J Biol Chem 288 34736-34745 (2013)
  19. A master switch couples Mg²⁺-assisted catalysis to domain motion in B. stearothermophilus tryptophanyl-tRNA Synthetase. Weinreb V, Li L, Carter CW. Structure 20 128-138 (2012)
  20. Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase. Budiman ME, Knaggs MH, Fetrow JS, Alexander RW. Proteins 68 670-689 (2007)
  21. Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design. Koh CY, Kim JE, Napoli AJ, Verlinde CL, Fan E, Buckner FS, Van Voorhis WC, Hol WG. Mol Biochem Parasitol 189 26-32 (2013)
  22. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis. Buddha MR, Crane BR. J Biol Chem 280 31965-31973 (2005)
  23. Crystal structures of Saccharomyces cerevisiae tryptophanyl-tRNA synthetase: new insights into the mechanism of tryptophan activation and implications for anti-fungal drug design. Zhou M, Dong X, Shen N, Zhong C, Ding J. Nucleic Acids Res 38 3399-3413 (2010)
  24. Structure alignment via Delaunay tetrahedralization. Roach J, Sharma S, Kapustina M, Carter CW. Proteins 60 66-81 (2005)
  25. Correlated conformational fluctuations during enzymatic catalysis: Implications for catalytic rate enhancement. Alper KO, Singla M, Stone JL, Bagdassarian CK. Protein Sci 10 1319-1330 (2001)
  26. Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis. Carter CW, Chandrasekaran SN, Weinreb V, Li L, Williams T. Struct Dyn 4 032101 (2017)
  27. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase. Merritt EA, Arakaki TL, Gillespie R, Napuli AJ, Kim JE, Buckner FS, Van Voorhis WC, Verlinde CL, Fan E, Zucker F, Hol WG. Mol Biochem Parasitol 177 20-28 (2011)
  28. Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase. Jia J, Xu F, Chen X, Chen L, Jin Y, Wang DT. Biochem J 365 749-756 (2002)
  29. Ligand dependent intra and inter subunit communication in human tryptophanyl tRNA synthetase as deduced from the dynamics of structure networks. Hansia P, Ghosh A, Vishveshwara S. Mol Biosyst 5 1860-1872 (2009)
  30. A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation. Lue SW, Kelley SO. Biochemistry 46 4466-4472 (2007)
  31. Escapement mechanisms: Efficient free energy transduction by reciprocally-coupled gating. Carter CW. Proteins 88 710-717 (2020)
  32. Comparison of histidine recognition in human and trypanosomatid histidyl-tRNA synthetases. Koh CY, Wetzel AB, de van der Schueren WJ, Hol WG. Biochimie 106 111-120 (2014)
  33. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase. Dong X, Zhou M, Zhong C, Yang B, Shen N, Ding J. Nucleic Acids Res 38 1401-1412 (2010)
  34. An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. Xu X, Zhou H, Zhou Q, Hong F, Vo MN, Niu W, Wang Z, Xiong X, Nakamura K, Wakasugi K, Schimmel P, Yang XL. RNA Biol 15 649-658 (2018)
  35. A dispensable peptide from Acidithiobacillus ferrooxidans tryptophanyl-tRNA synthetase affects tRNA binding. Zúñiga R, Salazar J, Canales M, Orellana O. FEBS Lett 532 387-390 (2002)
  36. Enzymatic conformational fluctuations along the reaction coordinate of cytidine deaminase. Noonan RC, Carter CW CW, Bagdassarian CK. Protein Sci 11 1424-1434 (2002)
  37. Dynamical properties of the loop 320s of substrate-free and substrate-bound muscle creatine kinase by NMR: evidence for independent subunits. Rivière G, Hologne M, Marcillat O, Lancelin JM. FEBS J 279 2863-2875 (2012)
  38. Microcalorimetry reveals multi-state thermal denaturation of G. stearothermophilus tryptophanyl-tRNA synthetase. Chandrasekaran SN, Das J, Dokholyan NV, Carter CW. Struct Dyn 10 044301 (2023)
  39. An asymmetric structure of bacterial TrpRS supports the half-of-the-sites catalytic mechanism and facilitates antimicrobial screening. Xiang M, Xia K, Chen B, Luo Z, Yu Y, Jiang L, Zhou H. Nucleic Acids Res 51 4637-4649 (2023)
  40. High-throughput thermal denaturation of tryptophanyl-tRNA synthetase combinatorial mutants reveals high-order energetic coupling determinants of conformational stability. Weinreb V, Weinreb G, Carter CW. Struct Dyn 10 044304 (2023)