1cmx Citations

Structural basis for the specificity of ubiquitin C-terminal hydrolases.

EMBO J 18 3877-87 (1999)
Cited: 195 times
EuropePMC logo PMID: 10406793

Abstract

The release of ubiquitin from attachment to other proteins and adducts is critical for ubiquitin biosynthesis, proteasomal degradation and other cellular processes. De-ubiquitination is accomplished in part by members of the UCH (ubiquitin C-terminal hydrolase) family of enzymes. We have determined the 2.25 A resolution crystal structure of the yeast UCH, Yuh1, in a complex with the inhibitor ubiquitin aldehyde (Ubal). The structure mimics the tetrahedral intermediate in the reaction pathway and explains the very high enzyme specificity. Comparison with a related, unliganded UCH structure indicates that ubiquitin binding is coupled to rearrangements which block the active-site cleft in the absence of authentic substrate. Remarkably, a 21-residue loop that becomes ordered upon binding Ubal lies directly over the active site. Efficiently processed substrates apparently pass through this loop, and constraints on the loop conformation probably function to control UCH specificity.

Reviews - 1cmx mentioned but not cited (2)

  1. Synthetic and semi-synthetic strategies to study ubiquitin signaling. van Tilburg GB, Elhebieshy AF, Ovaa H. Curr Opin Struct Biol 38 92-101 (2016)
  2. Emerging degrader technologies engaging lysosomal pathways. Ding Y, Xing D, Fei Y, Lu B. Chem Soc Rev 51 8832-8876 (2022)

Articles - 1cmx mentioned but not cited (21)

  1. Intricate knots in proteins: Function and evolution. Virnau P, Mirny LA, Kardar M. PLoS Comput Biol 2 e122 (2006)
  2. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A. Proc Natl Acad Sci U S A 102 10493-10498 (2005)
  3. Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, Lansbury PT, Ringe D, Petsko GA. Proc Natl Acad Sci U S A 103 4675-4680 (2006)
  4. Conservation of complex knotting and slipknotting patterns in proteins. Sułkowska JI, Rawdon EJ, Millett KC, Onuchic JN, Stasiak A. Proc Natl Acad Sci U S A 109 E1715-23 (2012)
  5. Deubiquitinating function of adenovirus proteinase. Balakirev MY, Jaquinod M, Haas AL, Chroboczek J. J Virol 76 6323-6331 (2002)
  6. Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics. Lakomek NA, Walter KF, Farès C, Lange OF, de Groot BL, Grubmüller H, Brüschweiler R, Munk A, Becker S, Meiler J, Griesinger C. J Biomol NMR 41 139-155 (2008)
  7. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family. Friedland GD, Lakomek NA, Griesinger C, Meiler J, Kortemme T. PLoS Comput Biol 5 e1000393 (2009)
  8. Conformational dynamics control ubiquitin-deubiquitinase interactions and influence in vivo signaling. Phillips AH, Zhang Y, Cunningham CN, Zhou L, Forrest WF, Liu PS, Steffek M, Lee J, Tam C, Helgason E, Murray JM, Kirkpatrick DS, Fairbrother WJ, Corn JE. Proc Natl Acad Sci U S A 110 11379-11384 (2013)
  9. Crystal structure of the peptidase domain of Streptococcus ComA, a bifunctional ATP-binding cassette transporter involved in the quorum-sensing pathway. Ishii S, Yano T, Ebihara A, Okamoto A, Manzoku M, Hayashi H. J Biol Chem 285 10777-10785 (2010)
  10. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. VanderLinden RT, Hemmis CW, Yao T, Robinson H, Hill CP. J Biol Chem 292 9493-9504 (2017)
  11. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Negi SS, Braun W. J Mol Model 13 1157-1167 (2007)
  12. Characterization of the cysteine protease domain of Semliki Forest virus replicase protein nsP2 by in vitro mutagenesis. Golubtsov A, Kääriäinen L, Caldentey J. FEBS Lett 580 1502-1508 (2006)
  13. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Steinfeld JB, Beláň O, Kwon Y, Terakawa T, Al-Zain A, Smith MJ, Crickard JB, Qi Z, Zhao W, Rothstein R, Symington LS, Sung P, Boulton SJ, Greene EC. Genes Dev 33 1191-1207 (2019)
  14. Relating destabilizing regions to known functional sites in proteins. Dessailly BH, Lensink MF, Wodak SJ. BMC Bioinformatics 8 141 (2007)
  15. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Morrow ME, Kim MI, Ronau JA, Sheedlo MJ, White RR, Chaney J, Paul LN, Lill MA, Artavanis-Tsakonas K, Das C. Biochemistry 52 3564-3578 (2013)
  16. Contribution of active site glutamine to rate enhancement in ubiquitin C-terminal hydrolases. Boudreaux DA, Chaney J, Maiti TK, Das C. FEBS J 279 1106-1118 (2012)
  17. ResBoost: characterizing and predicting catalytic residues in enzymes. Alterovitz R, Arvey A, Sankararaman S, Dallett C, Freund Y, Sjölander K. BMC Bioinformatics 10 197 (2009)
  18. The human "magnesome": detecting magnesium binding sites on human proteins. Piovesan D, Profiti G, Martelli PL, Casadio R. BMC Bioinformatics 13 Suppl 14 S10 (2012)
  19. Modeling of RAS complexes supports roles in cancer for less studied partners. Engin HB, Carlin D, Pratt D, Carter H. BMC Biophys 10 5 (2017)
  20. Reprogramming a Deubiquitinase into a Transamidase. Chang LH, Strieter ER. ACS Chem Biol 13 2808-2818 (2018)
  21. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes. Sudha G, Singh P, Swapna LS, Srinivasan N. Protein Sci 24 1856-1873 (2015)


Reviews citing this publication (52)

  1. Mechanisms underlying ubiquitination. Pickart CM. Annu Rev Biochem 70 503-533 (2001)
  2. The ubiquitin code. Komander D, Rape M. Annu Rev Biochem 81 203-229 (2012)
  3. Breaking the chains: structure and function of the deubiquitinases. Komander D, Clague MJ, Urbé S. Nat Rev Mol Cell Biol 10 550-563 (2009)
  4. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Reyes-Turcu FE, Ventii KH, Wilkinson KD. Annu Rev Biochem 78 363-397 (2009)
  5. Mechanism and function of deubiquitinating enzymes. Amerik AY, Hochstrasser M. Biochim Biophys Acta 1695 189-207 (2004)
  6. Ubiquitin-binding domains. Hicke L, Schubert HL, Hill CP. Nat Rev Mol Cell Biol 6 610-621 (2005)
  7. Molecular basis of NF-κB signaling. Napetschnig J, Wu H. Annu Rev Biophys 42 443-468 (2013)
  8. Mechanisms of Deubiquitinase Specificity and Regulation. Mevissen TET, Komander D. Annu Rev Biochem 86 159-192 (2017)
  9. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Wilkinson KD. Semin Cell Dev Biol 11 141-148 (2000)
  10. Deubiquitylases from genes to organism. Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Physiol Rev 93 1289-1315 (2013)
  11. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Finley D, Ulrich HD, Sommer T, Kaiser P. Genetics 192 319-360 (2012)
  12. Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. Rabut G, Peter M. EMBO Rep 9 969-976 (2008)
  13. The demographics of the ubiquitin system. Clague MJ, Heride C, Urbé S. Trends Cell Biol 25 417-426 (2015)
  14. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Day IN, Thompson RJ. Prog Neurobiol 90 327-362 (2010)
  15. Emerging roles of deubiquitinases in cancer-associated pathways. Sacco JJ, Coulson JM, Clague MJ, Urbé S. IUBMB Life 62 140-157 (2010)
  16. SCA3: neurological features, pathogenesis and animal models. Riess O, Rüb U, Pastore A, Bauer P, Schöls L. Cerebellum 7 125-137 (2008)
  17. Protein partners of deubiquitinating enzymes. Ventii KH, Wilkinson KD. Biochem J 414 161-175 (2008)
  18. Deubiquitinating enzymes: their diversity and emerging roles. Chung CH, Baek SH. Biochem Biophys Res Commun 266 633-640 (1999)
  19. Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Wing SS. Int J Biochem Cell Biol 35 590-605 (2003)
  20. Polyubiquitin binding and disassembly by deubiquitinating enzymes. Reyes-Turcu FE, Wilkinson KD. Chem Rev 109 1495-1508 (2009)
  21. Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Capili AD, Lima CD. Curr Opin Struct Biol 17 726-735 (2007)
  22. Structural studies of NF-κB signaling. Zheng C, Yin Q, Wu H. Cell Res 21 183-195 (2011)
  23. An emerging model for BAP1's role in regulating cell cycle progression. Eletr ZM, Wilkinson KD. Cell Biochem Biophys 60 3-11 (2011)
  24. Reverse the curse--the role of deubiquitination in cell cycle control. Song L, Rape M. Curr Opin Cell Biol 20 156-163 (2008)
  25. Substrate specificity of the ubiquitin and Ubl proteases. Ronau JA, Beckmann JF, Hochstrasser M. Cell Res 26 441-456 (2016)
  26. Chemistry and biology of the ubiquitin signal. Spasser L, Brik A. Angew Chem Int Ed Engl 51 6840-6862 (2012)
  27. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. Hewings DS, Flygare JA, Bogyo M, Wertz IE. FEBS J 284 1555-1576 (2017)
  28. PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Kessler BM, Edelmann MJ. Cell Biochem Biophys 60 21-38 (2011)
  29. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Ristic G, Tsou WL, Todi SV. Front Mol Neurosci 7 72 (2014)
  30. Structure characterization of the 26S proteasome. Kim HM, Yu Y, Cheng Y. Biochim Biophys Acta 1809 67-79 (2011)
  31. Structures and folding pathways of topologically knotted proteins. Virnau P, Mallam A, Jackson S. J Phys Condens Matter 23 033101 (2011)
  32. In-cell NMR spectroscopy. Maldonado AY, Burz DS, Shekhtman A. Prog Nucl Magn Reson Spectrosc 59 197-212 (2011)
  33. The ubiquitin proteasome system in Caenorhabditis elegans and its regulation. Papaevgeniou N, Chondrogianni N. Redox Biol 2 333-347 (2014)
  34. Drug discovery in the ubiquitin regulatory pathway. Wong BR, Parlati F, Qu K, Demo S, Pray T, Huang J, Payan DG, Bennett MK. Drug Discov Today 8 746-754 (2003)
  35. Chemical strategies to understand the language of ubiquitin signaling. Weller CE, Pilkerton ME, Chatterjee C. Biopolymers 101 144-155 (2014)
  36. The NEDD8 modification pathway in plants. Mergner J, Schwechheimer C. Front Plant Sci 5 103 (2014)
  37. Detection of ubiquitin-proteasome enzymatic activities in cells: application of activity-based probes to inhibitor development. Kramer HB, Nicholson B, Kessler BM, Altun M. Biochim Biophys Acta 1823 2029-2037 (2012)
  38. TGF-β signaling pathway mediated by deubiquitinating enzymes. Kim SY, Baek KH. Cell Mol Life Sci 76 653-665 (2019)
  39. Structural aspects of recently discovered viral deubiquitinating activities. Sulea T, Lindner HA, Ménard R. Biol Chem 387 853-862 (2006)
  40. The role of deubiquitinases in breast cancer. Xiao Z, Zhang P, Ma L. Cancer Metastasis Rev 35 589-600 (2016)
  41. Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Li Y, Reverter D. Int J Mol Sci 22 986 (2021)
  42. Structures of proteases for ubiqutin and ubiquitin-like modifiers. Ha BH, Kim EE. BMB Rep 41 435-443 (2008)
  43. Cross-saturation and transferred cross-saturation experiments. Ueda T, Takeuchi K, Nishida N, Stampoulis P, Kofuku Y, Osawa M, Shimada I. Q Rev Biophys 47 143-187 (2014)
  44. The role of deubiquitinating enzymes in gastric cancer. Sun J, Shi X, Mamun MAA, Gao Y. Oncol Lett 19 30-44 (2020)
  45. Putting proteomics on target: activity-based profiling of ubiquitin and ubiquitin-like processing enzymes. Kessler BM. Expert Rev Proteomics 3 213-221 (2006)
  46. Role of deubiquitinases in DNA damage response. Le J, Perez E, Nemzow L, Gong F. DNA Repair (Amst) 76 89-98 (2019)
  47. Regulation of the Hippo signaling pathway by deubiquitinating enzymes in cancer. Mussell A, Frangou C, Zhang J. Genes Dis 6 335-341 (2019)
  48. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Reddington CJ, Fellner M, Burgess AE, Mace PD. Int J Mol Sci 21 E7837 (2020)
  49. The necessity of NEDD8/Rub1 for vitality and its association with mitochondria-derived oxidative stress. Pick E. Redox Biol 37 101765 (2020)
  50. Ubiquitin at Fox Chase. Rose I. Cell Death Differ 12 1198-1201 (2005)
  51. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Kim WD, Mathavarajah S, Huber RJ. Front Physiol 13 827435 (2022)
  52. DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Klonisch T, Logue SE, Hombach-Klonisch S, Vriend J. Biomolecules 13 1503 (2023)

Articles citing this publication (120)

  1. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT. Cell 111 209-218 (2002)
  2. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mossessova E, Lima CD. Mol Cell 5 865-876 (2000)
  3. Multiple associated proteins regulate proteasome structure and function. Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, Walz T, Ploegh H, Finley D. Mol Cell 10 495-507 (2002)
  4. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE, Shi Y. Cell 111 1041-1054 (2002)
  5. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D. EMBO Rep 10 466-473 (2009)
  6. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. J Virol 79 15189-15198 (2005)
  7. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. Hu M, Li P, Song L, Jeffrey PD, Chenova TA, Wilkinson KD, Cohen RE, Shi Y. EMBO J 24 3747-3756 (2005)
  8. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. Lindner HA, Fotouhi-Ardakani N, Lytvyn V, Lachance P, Sulea T, Ménard R. J Virol 79 15199-15208 (2005)
  9. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, Washburn MP, Conaway RC, Conaway JW, Cohen RE. Nat Cell Biol 8 994-1002 (2006)
  10. An efficient system for high-level expression and easy purification of authentic recombinant proteins. Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT. Protein Sci 13 1331-1339 (2004)
  11. Otubains: a new family of cysteine proteases in the ubiquitin pathway. Balakirev MY, Tcherniuk SO, Jaquinod M, Chroboczek J. EMBO Rep 4 517-522 (2003)
  12. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Liu Y, Lashuel HA, Choi S, Xing X, Case A, Ni J, Yeh LA, Cuny GD, Stein RL, Lansbury PT. Chem Biol 10 837-846 (2003)
  13. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K. J Biol Chem 283 23731-23738 (2008)
  14. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. Ambroggio XI, Rees DC, Deshaies RJ. PLoS Biol 2 E2 (2004)
  15. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KK. Crit Care Med 38 138-144 (2010)
  16. Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Hemelaar J, Borodovsky A, Kessler BM, Reverter D, Cook J, Kolli N, Gan-Erdene T, Wilkinson KD, Gill G, Lima CD, Ploegh HL, Ovaa H. Mol Cell Biol 24 84-95 (2004)
  17. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. Misaghi S, Galardy PJ, Meester WJ, Ovaa H, Ploegh HL, Gaudet R. J Biol Chem 280 1512-1520 (2005)
  18. A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Reverter D, Lima CD. Structure 12 1519-1531 (2004)
  19. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, Demery JA, Liu MC, Mo J, Akinyi L, Mondello S, Schmid K, Robertson CS, Tortella FC, Hayes RL, Wang KK. J Trauma Acute Care Surg 72 1335-1344 (2012)
  20. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Wolberger C, Pickart CM. EMBO J 22 5241-5250 (2003)
  21. Identification and characterization of DEN1, a deneddylase of the ULP family. Gan-Erdene T, Nagamalleswari K, Yin L, Wu K, Pan ZQ, Wilkinson KD. J Biol Chem 278 28892-28900 (2003)
  22. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20. Lin SC, Chung JY, Lamothe B, Rajashankar K, Lu M, Lo YC, Lam AY, Darnay BG, Wu H. J Mol Biol 376 526-540 (2008)
  23. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P. Proc Natl Acad Sci U S A 102 12700-12705 (2005)
  24. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Yao T, Song L, Jin J, Cai Y, Takahashi H, Swanson SK, Washburn MP, Florens L, Conaway RC, Cohen RE, Conaway JW. Mol Cell 31 909-917 (2008)
  25. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF, Schulman BA. Nat Struct Mol Biol 11 927-935 (2004)
  26. Dissection of USP catalytic domains reveals five common insertion points. Ye Y, Scheel H, Hofmann K, Komander D. Mol Biosyst 5 1797-1808 (2009)
  27. Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes. Schlieker C, Weihofen WA, Frijns E, Kattenhorn LM, Gaudet R, Ploegh HL. Mol Cell 25 677-687 (2007)
  28. A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Kroeger TS, Watkins KP, Friso G, van Wijk KJ, Barkan A. Proc Natl Acad Sci U S A 106 4537-4542 (2009)
  29. Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Reverter D, Lima CD. Nat Struct Mol Biol 13 1060-1068 (2006)
  30. Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, Muller U, Oli MW, Zheng W, Kobeissy F, Papa L, Lu XC, Dave JR, Tortella FC, Hayes RL, Wang KK. Eur J Neurosci 31 722-732 (2010)
  31. Total chemical synthesis of di-ubiquitin chains. Kumar KS, Spasser L, Erlich LA, Bavikar SN, Brik A. Angew Chem Int Ed Engl 49 9126-9131 (2010)
  32. Structural and functional analysis of ataxin-2 and ataxin-3. Albrecht M, Golatta M, Wüllner U, Lengauer T. Eur J Biochem 271 3155-3170 (2004)
  33. Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. Shen LN, Liu H, Dong C, Xirodimas D, Naismith JH, Hay RT. EMBO J 24 1341-1351 (2005)
  34. Convergent evolution of enzyme active sites is not a rare phenomenon. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ. J Mol Biol 372 817-845 (2007)
  35. A protein microarray-based analysis of S-nitrosylation. Foster MW, Forrester MT, Stamler JS. Proc Natl Acad Sci U S A 106 18948-18953 (2009)
  36. Dual mechanisms specify Doa4-mediated deubiquitination at multivesicular bodies. Richter C, West M, Odorizzi G. EMBO J 26 2454-2464 (2007)
  37. SUMO protease SENP1 induces isomerization of the scissile peptide bond. Shen L, Tatham MH, Dong C, Zagórska A, Naismith JH, Hay RT. Nat Struct Mol Biol 13 1069-1077 (2006)
  38. Forging isopeptide bonds using thiol-ene chemistry: site-specific coupling of ubiquitin molecules for studying the activity of isopeptidases. Valkevich EM, Guenette RG, Sanchez NA, Chen YC, Ge Y, Strieter ER. J Am Chem Soc 134 6916-6919 (2012)
  39. Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Vander Linden RT, Hemmis CW, Schmitt B, Ndoja A, Whitby FG, Robinson H, Cohen RE, Yao T, Hill CP. Mol Cell 57 901-911 (2015)
  40. Biochemical characterization of USP7 reveals post-translational modification sites and structural requirements for substrate processing and subcellular localization. Fernández-Montalván A, Bouwmeester T, Joberty G, Mader R, Mahnke M, Pierrat B, Schlaeppi JM, Worpenberg S, Gerhartz B. FEBS J 274 4256-4270 (2007)
  41. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation. Boudreaux DA, Maiti TK, Davies CW, Das C. Proc Natl Acad Sci U S A 107 9117-9122 (2010)
  42. In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. Sakai T, Tochio H, Tenno T, Ito Y, Kokubo T, Hiroaki H, Shirakawa M. J Biomol NMR 36 179-188 (2006)
  43. Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development. Liu Y, Wang F, Zhang H, He H, Ma L, Deng XW. Plant J 55 844-856 (2008)
  44. Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. Todi SV, Scaglione KM, Blount JR, Basrur V, Conlon KP, Pastore A, Elenitoba-Johnson K, Paulson HL. J Biol Chem 285 39303-39313 (2010)
  45. Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. Burroughs AM, Jaffee M, Iyer LM, Aravind L. J Struct Biol 162 205-218 (2008)
  46. Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Frickel EM, Quesada V, Muething L, Gubbels MJ, Spooner E, Ploegh H, Artavanis-Tsakonas K. Cell Microbiol 9 1601-1610 (2007)
  47. Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, Fraternali F, Pastore A. Biopolymers 91 1203-1214 (2009)
  48. Structure and function of plant-type ferredoxins. Fukuyama K. Photosynth Res 81 289-301 (2004)
  49. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. Kiel C, Serrano L. J Mol Biol 355 821-844 (2006)
  50. Divergent N-terminal sequences target an inducible testis deubiquitinating enzyme to distinct subcellular structures. Lin H, Keriel A, Morales CR, Bedard N, Zhao Q, Hingamp P, Lefrançois S, Combaret L, Wing SS. Mol Cell Biol 20 6568-6578 (2000)
  51. Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1. Reverter D, Wu K, Erdene TG, Pan ZQ, Wilkinson KD, Lima CD. J Mol Biol 345 141-151 (2005)
  52. Crystal structure of human otubain 2. Nanao MH, Tcherniuk SO, Chroboczek J, Dideberg O, Dessen A, Balakirev MY. EMBO Rep 5 783-788 (2004)
  53. Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Valkevich EM, Sanchez NA, Ge Y, Strieter ER. Biochemistry 53 4979-4989 (2014)
  54. Chemical synthesis of ubiquitinated peptides with varying lengths and types of ubiquitin chains to explore the activity of deubiquitinases. Bavikar SN, Spasser L, Haj-Yahya M, Karthikeyan SV, Moyal T, Kumar KS, Brik A. Angew Chem Int Ed Engl 51 758-763 (2012)
  55. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. Popp MW, Artavanis-Tsakonas K, Ploegh HL. J Biol Chem 284 3593-3602 (2009)
  56. NEDD8: a new ataxin-3 interactor. Ferro A, Carvalho AL, Teixeira-Castro A, Almeida C, Tomé RJ, Cortes L, Rodrigues AJ, Logarinho E, Sequeiros J, Macedo-Ribeiro S, Maciel P. Biochim Biophys Acta 1773 1619-1627 (2007)
  57. Ubiquitin- and proteasome-dependent proteolysis in plants. Ingvardsen C, Veierskov B. Physiol Plant 112 451-459 (2001)
  58. Crystal structure of a Josephin-ubiquitin complex: evolutionary restraints on ataxin-3 deubiquitinating activity. Weeks SD, Grasty KC, Hernandez-Cuebas L, Loll PJ. J Biol Chem 286 4555-4565 (2011)
  59. Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3. Artavanis-Tsakonas K, Weihofen WA, Antos JM, Coleman BI, Comeaux CA, Duraisingh MT, Gaudet R, Ploegh HL. J Biol Chem 285 6857-6866 (2010)
  60. Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Sasakawa H, Sakata E, Yamaguchi Y, Komatsu M, Tatsumi K, Kominami E, Tanaka K, Kato K. Biochem Biophys Res Commun 343 21-26 (2006)
  61. Untangling the folding mechanism of the 5(2)-knotted protein UCH-L3. Andersson FI, Pina DG, Mallam AL, Blaser G, Jackson SE. FEBS J 276 2625-2635 (2009)
  62. Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NEDD8's E1. Souphron J, Waddell MB, Paydar A, Tokgöz-Gromley Z, Roussel MF, Schulman BA. Biochemistry 47 8961-8969 (2008)
  63. Synthesis and characterization of fluorescent ubiquitin derivatives as highly sensitive substrates for the deubiquitinating enzymes UCH-L3 and USP-2. Tirat A, Schilb A, Riou V, Leder L, Gerhartz B, Zimmermann J, Worpenberg S, Eidhoff U, Freuler F, Stettler T, Mayr L, Ottl J, Leuenberger B, Filipuzzi I. Anal Biochem 343 244-255 (2005)
  64. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Zhou ZR, Zhang YH, Liu S, Song AX, Hu HY. Biochem J 441 143-149 (2012)
  65. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y. Biochem Biophys Res Commun 390 855-860 (2009)
  66. Structure validation of the Josephin domain of ataxin-3: conclusive evidence for an open conformation. Nicastro G, Habeck M, Masino L, Svergun DI, Pastore A. J Biomol NMR 36 267-277 (2006)
  67. The Machado-Joseph disease deubiquitylase ataxin-3 interacts with LC3C/GABARAP and promotes autophagy. Herzog LK, Kevei É, Marchante R, Böttcher C, Bindesbøll C, Lystad AH, Pfeiffer A, Gierisch ME, Salomons FA, Simonsen A, Hoppe T, Dantuma NP. Aging Cell 19 e13051 (2020)
  68. Mutant ubiquitin (UBB+1) associated with neurodegenerative disorders is hydrolyzed by ubiquitin C-terminal hydrolase L3 (UCH-L3). Dennissen FJ, Kholod N, Hermes DJ, Kemmerling N, Steinbusch HW, Dantuma NP, van Leeuwen FW. FEBS Lett 585 2568-2574 (2011)
  69. Structural characterization of human Uch37. Burgie SE, Bingman CA, Soni AB, Phillips GN. Proteins 80 649-654 (2012)
  70. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. Maiti TK, Permaul M, Boudreaux DA, Mahanic C, Mauney S, Das C. FEBS J 278 4917-4926 (2011)
  71. A substrate for deubiquitinating enzymes based on time-resolved fluorescence resonance energy transfer between terbium and yellow fluorescent protein. Horton RA, Strachan EA, Vogel KW, Riddle SM. Anal Biochem 360 138-143 (2007)
  72. Small ubiquitin-like modifying protein isopeptidase assay based on poliovirus RNA polymerase activity. Arnold JJ, Bernal A, Uche U, Sterner DE, Butt TR, Cameron CE, Mattern MR. Anal Biochem 350 214-221 (2006)
  73. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers. Bett JS, Ritorto MS, Ewan R, Jaffray EG, Virdee S, Chin JW, Knebel A, Kurz T, Trost M, Tatham MH, Hay RT. Biochem J 466 489-498 (2015)
  74. Extended ubiquitin species are protein-based DUB inhibitors. Krutauz D, Reis N, Nakasone MA, Siman P, Zhang D, Kirkpatrick DS, Gygi SP, Brik A, Fushman D, Glickman MH. Nat Chem Biol 10 664-670 (2014)
  75. cPKCγ-mediated down-regulation of UCHL1 alleviates ischaemic neuronal injuries by decreasing autophagy via ERK-mTOR pathway. Zhang D, Han S, Wang S, Luo Y, Zhao L, Li J. J Cell Mol Med 21 3641-3657 (2017)
  76. Mechanism of the Rpn13-induced activation of Uch37. Jiao L, Ouyang S, Shaw N, Song G, Feng Y, Niu F, Qiu W, Zhu H, Hung LW, Zuo X, Eleonora Shtykova V, Zhu P, Dong YH, Xu R, Liu ZJ. Protein Cell 5 616-630 (2014)
  77. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). Davies CW, Chaney J, Korbel G, Ringe D, Petsko GA, Ploegh H, Das C. Bioorg Med Chem Lett 22 3900-3904 (2012)
  78. DENEDDYLASE1 deconjugates NEDD8 from non-cullin protein substrates in Arabidopsis thaliana. Mergner J, Heinzlmeir S, Kuster B, Schwechheimer C. Plant Cell 27 741-753 (2015)
  79. Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations. Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Rothlisberger U, Carloni P. Proteins 52 212-224 (2003)
  80. Cloning, expression, and mapping of a mouse gene, Uchl4, highly homologous to human and mouse Uchl3. Osawa Y, Wang YL, Osaka H, Aoki S, Wada K. Biochem Biophys Res Commun 283 627-633 (2001)
  81. A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation. Sun ZG, Kong WH, Zhang YJ, Yan S, Lu JN, Gu Z, Lin F, Tso JK. Cell Res 12 199-206 (2002)
  82. Activity-Based Probes for HECT E3 Ubiquitin Ligases. Byrne R, Mund T, Licchesi JDF. Chembiochem 18 1415-1427 (2017)
  83. Molecular dynamics studies of caspase-3. Sulpizi M, Rothlisberger U, Carloni P. Biophys J 84 2207-2215 (2003)
  84. Nedd8 hydrolysis by UCH proteases in Plasmodium parasites. Karpiyevich M, Adjalley S, Mol M, Ascher DB, Mason B, van der Heden van Noort GJ, Laman H, Ovaa H, Lee MCS, Artavanis-Tsakonas K. PLoS Pathog 15 e1008086 (2019)
  85. Proteomic identification and analysis of K63-linked ubiquitin conjugates. Cannon J, Nakasone M, Fushman D, Fenselau C. Anal Chem 84 10121-10128 (2012)
  86. Characterization of the Ubiquitin C-Terminal Hydrolase and Ubiquitin-Specific Protease Families in Rice (Oryza sativa). Wang DH, Song W, Wei SW, Zheng YF, Chen ZS, Han JD, Zhang HT, Luo JC, Qin YM, Xu ZH, Bai SN. Front Plant Sci 9 1636 (2018)
  87. High-throughput matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry-based deubiquitylating enzyme assay for drug discovery. De Cesare V, Moran J, Traynor R, Knebel A, Ritorto MS, Trost M, McLauchlan H, Hastie CJ, Davies P. Nat Protoc 15 4034-4057 (2020)
  88. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves. Insaidoo FK, Zajicek J, Baker BM. Biochemistry 48 9708-9710 (2009)
  89. Ubiquitin at Fox Chase. Rose IA. Proc Natl Acad Sci U S A 102 11575-11577 (2005)
  90. Utilization of lysine ¹³C-methylation NMR for protein-protein interaction studies. Hattori Y, Furuita K, Ohki I, Ikegami T, Fukada H, Shirakawa M, Fujiwara T, Kojima C. J Biomol NMR 55 19-31 (2013)
  91. A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Hussain S, Bedekovics T, Ali A, Zaid O, May DG, Roux KJ, Galardy PJ. Cell Death Discov 5 152 (2019)
  92. Chemoenzymatic synthesis of bifunctional polyubiquitin substrates for monitoring ubiquitin chain remodeling. Trang VH, Rodgers ML, Boyle KJ, Hoskins AA, Strieter ER. Chembiochem 15 1563-1568 (2014)
  93. Divergence in Ubiquitin Interaction and Catalysis among the Ubiquitin-Specific Protease Family Deubiquitinating Enzymes. Tencer AH, Liang Q, Zhuang Z. Biochemistry 55 4708-4719 (2016)
  94. Historical Article Early work on the ubiquitin proteasome system, an interview with Irwin Rose. Interview by CDD. Rose I. Cell Death Differ 12 1162-1166 (2005)
  95. Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress. Wang C, Wang CY, Zhao XQ, Chen RF, Lan P, Shen RF. Biochim Biophys Acta 1834 1969-1975 (2013)
  96. Tissue-specificity, functional characterization and subcellular localization of a rat ubiquitin-specific processing protease, UBP109, whose mRNA expression is developmentally regulated. Park KC, Choi EJ, Min SW, Chung SS, Kim H, Suzuki T, Tanaka K, Chung CH. Biochem J 349 443-453 (2000)
  97. Comment Breaking up with a kinky SUMO. Huang DT, Schulman BA. Nat Struct Mol Biol 13 1045-1047 (2006)
  98. Deubiquitinating enzyme BAP1 is involved in the formation and maintenance of the diapause embryos of Artemia. Yang F, Jia SN, Yu YQ, Ye X, Liu J, Qian YQ, Yang WJ. Cell Stress Chaperones 17 577-587 (2012)
  99. Further characterization of the putative human isopeptidase T catalytic site. Lacombe T, Gabriel JM. FEBS Lett 531 469-474 (2002)
  100. Synthesis of Branched Triubiquitin Active-Site Directed Probes. Liu J, Li Y, Deol KK, Strieter ER. Org Lett 21 6790-6794 (2019)
  101. Lecture Ubiquitin at Fox Chase (Nobel lecture). Rose I. Angew Chem Int Ed Engl 44 5926-5931 (2005)
  102. Characterization of ubiquitin C-terminal hydrolase 1 (YUH1) from Saccharomyces cerevisiae expressed in recombinant Escherichia coli. Yu HA, Kim SG, Kim EJ, Lee WJ, Kim DO, Park K, Park YC, Seo JH. Protein Expr Purif 56 20-26 (2007)
  103. Comparison of Cross-Regulation by Different OTUB1:E2 Complexes. Que LT, Morrow ME, Wolberger C. Biochemistry 59 921-932 (2020)
  104. The molecular determinants for distinguishing between ubiquitin and NEDD8 by USP2. Shin YC, Chen JH, Chang SC. Sci Rep 7 2304 (2017)
  105. News Two-stepping with E1. VanDemark AP, Hill CP. Nat Struct Biol 10 244-246 (2003)
  106. Construction of tumor-specific toxins using ubiquitin fusion technique. Tcherniuk SO, Chroboczek J, Balakirev MY. Mol Ther 11 196-204 (2005)
  107. Structure determination of a protein assembly by amino acid selective cross-saturation. Kanamori E, Igarashi S, Osawa M, Fukunishi Y, Shimada I, Nakamura H. Proteins 79 179-190 (2011)
  108. Structures of ubiquitin insertion mutants support site-specific reflex response to insertions hypothesis. Ferraro DM, Ferraro DJ, Ramaswamy S, Robertson AD. J Mol Biol 359 390-402 (2006)
  109. Turnip yellow mosaic virus protease binds ubiquitin suboptimally to fine-tune its deubiquitinase activity. Fieulaine S, Witte MD, Theile CS, Ayach M, Ploegh HL, Jupin I, Bressanelli S. J Biol Chem 295 13769-13783 (2020)
  110. A cryptic K48 ubiquitin chain binding site on UCH37 is required for its role in proteasomal degradation. Du J, Babik S, Li Y, Deol KK, Eyles SJ, Fejzo J, Tonelli M, Strieter E. Elife 11 e76100 (2022)
  111. E1-catalyzed ubiquitin C-terminal amidation for the facile synthesis of deubiquitinase substrates. Wang XA, Kurra Y, Huang Y, Lee YJ, Liu WR. Chembiochem 15 37-41 (2014)
  112. Phosphorylation meets proteolysis. Renatus M, Farady CJ. Structure 20 570-571 (2012)
  113. Molecular Characterization and Expression Profiles of Sp-uchl3 and Sp-uchl5 during Gonad Development of Scylla paramamosain. Han K, Dai Y, Zhang Z, Zou Z, Wang Y. Molecules 23 E213 (2018)
  114. Polyclonal and monoclonal antibodies specific for USP17, a proapoptotic deubiquitinating enzyme. Ramakrishna S, Suresh B, Kang IC, Baek KH. Hybridoma (Larchmt) 29 311-319 (2010)
  115. Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. Kodama Y, Reese ML, Shimba N, Ono K, Kanamori E, Dötsch V, Noguchi S, Fukunishi Y, Suzuki E, Shimada I, Takahashi H. J Struct Biol 174 434-442 (2011)
  116. Characterization and tissue expression of channel catfish (Ictalurus punctatus Rafinesque, 1818) ubiquitin carboxyl-terminal hydrolase L5 (UCHL5) cDNA. Yeh HY, Klesius PH. Mol Biol Rep 37 1229-1234 (2010)
  117. Expanding the repertoire of human tandem repeat RNA-binding proteins. Ormazábal A, Carletti MS, Saldaño TE, Gonzalez Buitron M, Marchetti J, Palopoli N, Bateman A. PLoS One 18 e0290890 (2023)
  118. News Regulating UBP-mediated ubiquitin deconjugation. Lima CD. Structure 11 3-4 (2003)
  119. Strategies for Monitoring "Ubiquitin C-Terminal Hydrolase 1" (Yuh1) Activity. Saad S, Berda E, Klein Y, Issa S, Pick E. Methods Mol Biol 2602 107-122 (2023)
  120. USP10 promotes intrahepatic cholangiocarcinoma cell survival and stemness via SNAI1 deubiquitination. Zhu W, Ye B, Yang S, Li Y. J Mol Histol 54 703-714 (2023)


Related citations provided by authors (1)

  1. Crystal Structure of a Deubiquitinating Enzyme (Human Uch-L3) at 1.8 A Resolution. Johnston SC, Larsen CN, Cook WJ, Wilkinson KD, Hill CP EMBO J. 16 3787- (1997)