1cll Citations

Calmodulin structure refined at 1.7 A resolution.

J Mol Biol 228 1177-92 (1992)
Cited: 499 times
EuropePMC logo PMID: 1474585

Abstract

We have determined and refined the crystal structure of a recombinant calmodulin at 1.7 A resolution. The structure was determined by molecular replacement, using the 2.2 A published native bovine brain structure as the starting model. The final crystallographic R-factor, using 14,469 reflections in the 10.0 to 1.7 A range with structure factors exceeding 0.5 sigma, is 0.216. Bond lengths and bond angle distances have root-mean-square deviations from ideal values of 0.009 A and 0.032 A, respectively. The final model consists of 1279 non-hydrogen atoms, including four calcium ions, 1130 protein atoms, including three Asp118 side-chain atoms in double conformation, 139 water molecules and one ethanol molecule. The electron densities for residues 1 to 4 and 148 of calmodulin are poorly defined, and not included in our model, except for main-chain atoms of residue 4. The calmodulin structure from our crystals is very similar to the earlier 2.2 A structure described by Babu and coworkers with a root-mean-square deviation of 0.36 A. Calmodulin remains a dumb-bell-shaped molecule, with similar lobes and connected by a central alpha-helix. Each lobe contains three alpha-helices and two Ca2+ binding EF hand loops, with a short antiparallel beta-sheet between adjacent EF hand loops and one non-EF hand loop. There are some differences in the structure of the central helix. The crystal packing is extensively studied, and facile crystal growth along the z-axis of the triclinic crystals is explained. Herein, we describe hydrogen bonding in the various secondary structure elements and hydration of calmodulin.

Reviews - 1cll mentioned but not cited (23)

  1. Ca(2+)/calmodulin-dependent protein kinases. Swulius MT, Waxham MN. Cell Mol Life Sci 65 2637-2657 (2008)
  2. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. Grabarek Z. Biochim Biophys Acta 1813 913-921 (2011)
  3. Myosin light chains: Teaching old dogs new tricks. Heissler SM, Sellers JR. Bioarchitecture 4 169-188 (2014)
  4. The diversity of calcium sensor proteins in the regulation of neuronal function. McCue HV, Haynes LP, Burgoyne RD. Cold Spring Harb Perspect Biol 2 a004085 (2010)
  5. Calmodulin and PI3K Signaling in KRAS Cancers. Nussinov R, Wang G, Tsai CJ, Jang H, Lu S, Banerjee A, Zhang J, Gaponenko V. Trends Cancer 3 214-224 (2017)
  6. Binding of transition metals to S100 proteins. Gilston BA, Skaar EP, Chazin WJ. Sci China Life Sci 59 792-801 (2016)
  7. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Villalobo A, Berchtold MW. Int J Mol Sci 21 E765 (2020)
  8. Critical Role of Intracellular RyR1 Calcium Release Channels in Skeletal Muscle Function and Disease. Hernández-Ochoa EO, Pratt SJP, Lovering RM, Schneider MF. Front Physiol 6 420 (2015)
  9. Calcium Sensors in Neuronal Function and Dysfunction. Burgoyne RD, Helassa N, McCue HV, Haynes LP. Cold Spring Harb Perspect Biol 11 a035154 (2019)
  10. Interplay between conformational selection and induced fit in multidomain protein-ligand binding probed by paramagnetic relaxation enhancement. Clore GM. Biophys Chem 186 3-12 (2014)
  11. Sense and specificity in neuronal calcium signalling. Burgoyne RD, Haynes LP. Biochim Biophys Acta 1853 1921-1932 (2015)
  12. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Neely A, Hidalgo P. Front Physiol 5 209 (2014)
  13. AlphaFold illuminates half of the dark human proteins. Binder JL, Berendzen J, Stevens AO, He Y, Wang J, Dokholyan NV, Oprea TI. Curr Opin Struct Biol 74 102372 (2022)
  14. The multifunctional role of phospho-calmodulin in pathophysiological processes. Villalobo A. Biochem J 475 4011-4023 (2018)
  15. Calmodulinopathy: A Novel, Life-Threatening Clinical Entity Affecting the Young. Kotta MC, Sala L, Ghidoni A, Badone B, Ronchi C, Parati G, Zaza A, Crotti L. Front Cardiovasc Med 5 175 (2018)
  16. A dynamic look backward and forward. Palmer AG. J Magn Reson 266 73-80 (2016)
  17. Secreted Phospholipases A2 - not just Enzymes: Revisited. Ivanušec A, Šribar J, Križaj I. Int J Biol Sci 18 873-888 (2022)
  18. Calcium-regulated mitochondrial ATP-Mg/Pi carriers evolved from a fusion of an EF-hand regulatory domain with a mitochondrial ADP/ATP carrier-like domain. Harborne SPD, Kunji ERS. IUBMB Life 70 1222-1232 (2018)
  19. The Role of Mass Spectrometry in Structural Studies of Flavin-Based Electron Bifurcating Enzymes. Tokmina-Lukaszewska M, Patterson A, Berry L, Scott L, Balasubramanian N, Bothner B. Front Microbiol 9 1397 (2018)
  20. Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition. Pedretti M, Bombardi L, Conter C, Favretto F, Dominici P, Astegno A. Int J Mol Sci 22 12173 (2021)
  21. Calmodulin in Paramecium: Focus on Genomic Data. Villalobo E, Gutiérrez G, Villalobo A. Microorganisms 10 1915 (2022)
  22. Regulation of ErbB Receptors by the Ca2+ Sensor Protein Calmodulin in Cancer. Villalobo A. Biomedicines 11 661 (2023)
  23. Ca2+ Signaling and Src Functions in Tumor Cells. Villalobo A. Biomolecules 13 1739 (2023)

Articles - 1cll mentioned but not cited (204)

  1. SuperPose: a simple server for sophisticated structural superposition. Maiti R, Van Domselaar GH, Zhang H, Wishart DS. Nucleic Acids Res 32 W590-4 (2004)
  2. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. Tria G, Mertens HD, Kachala M, Svergun DI. IUCrJ 2 207-217 (2015)
  3. Characterization of molecular recognition features, MoRFs, and their binding partners. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK. J Proteome Res 6 2351-2366 (2007)
  4. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Nyegaard M, Overgaard MT, Søndergaard MT, Vranas M, Behr ER, Hildebrandt LL, Lund J, Hedley PL, Camm AJ, Wettrell G, Fosdal I, Christiansen M, Børglum AD. Am J Hum Genet 91 703-712 (2012)
  5. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L. Proc Natl Acad Sci U S A 102 10147-10152 (2005)
  6. Protein structure fitting and refinement guided by cryo-EM density. Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A. Structure 16 295-307 (2008)
  7. The unfoldomics decade: an update on intrinsically disordered proteins. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN. BMC Genomics 9 Suppl 2 S1 (2008)
  8. Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin. Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, Pronin AN, Benovic JL, Fariss RN, Palczewski K. J Biol Chem 275 1247-1260 (2000)
  9. Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. Wu Y, Yang Y, Ye S, Jiang Y. Nature 466 393-397 (2010)
  10. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Sekhar A, Kay LE. Proc Natl Acad Sci U S A 110 12867-12874 (2013)
  11. Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I, Bustamante C. Science 348 457-460 (2015)
  12. 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, Hura GL, Jacques DA, Kirby NM, Kwan AH, Pérez J, Pollack L, Ryan TM, Sali A, Schneidman-Duhovny D, Schwede T, Svergun DI, Sugiyama M, Tainer JA, Vachette P, Westbrook J, Whitten AE. Acta Crystallogr D Struct Biol 73 710-728 (2017)
  13. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites. Cimermancic P, Weinkam P, Rettenmaier TJ, Bichmann L, Keedy DA, Woldeyes RA, Schneidman-Duhovny D, Demerdash ON, Mitchell JC, Wells JA, Fraser JS, Sali A. J Mol Biol 428 709-719 (2016)
  14. Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor. Shen Y, Zhukovskaya NL, Guo Q, Florián J, Tang WJ. EMBO J 24 929-941 (2005)
  15. Structural insights on TRPV5 gating by endogenous modulators. Hughes TET, Pumroy RA, Yazici AT, Kasimova MA, Fluck EC, Huynh KW, Samanta A, Molugu SK, Zhou ZH, Carnevale V, Rohacs T, Moiseenkova-Bell VY. Nat Commun 9 4198 (2018)
  16. Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5. Chagot B, Chazin WJ. J Mol Biol 406 106-119 (2011)
  17. Efficient and verified simulation of a path ensemble for conformational change in a united-residue model of calmodulin. Zhang BW, Jasnow D, Zuckerman DM. Proc Natl Acad Sci U S A 104 18043-18048 (2007)
  18. Can conformational change be described by only a few normal modes? Petrone P, Pande VS. Biophys J 90 1583-1593 (2006)
  19. Transient, sparsely populated compact states of apo and calcium-loaded calmodulin probed by paramagnetic relaxation enhancement: interplay of conformational selection and induced fit. Anthis NJ, Doucleff M, Clore GM. J Am Chem Soc 133 18966-18974 (2011)
  20. Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer. Park HY, Kim SA, Korlach J, Rhoades E, Kwok LW, Zipfel WR, Waxham MN, Webb WW, Pollack L. Proc Natl Acad Sci U S A 105 542-547 (2008)
  21. Interaction of calmodulin with Sec61α limits Ca2+ leakage from the endoplasmic reticulum. Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, Dudek J, Benedix J, Harsman A, Kopp A, Helms V, Cavalié A, Wagner R, Zimmermann R. EMBO J 30 17-31 (2011)
  22. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Li W, Wang W, Takada S. Proc Natl Acad Sci U S A 111 10550-10555 (2014)
  23. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies. Keskin O. BMC Struct Biol 7 31 (2007)
  24. A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Yang S, Park S, Makowski L, Roux B. Biophys J 96 4449-4463 (2009)
  25. Normal-modes-based prediction of protein conformational changes guided by distance constraints. Zheng W, Brooks BR. Biophys J 88 3109-3117 (2005)
  26. Conserved properties of individual Ca2+-binding sites in calmodulin. Halling DB, Liebeskind BJ, Hall AW, Aldrich RW. Proc Natl Acad Sci U S A 113 E1216-25 (2016)
  27. Human Calmodulin Mutations. Jensen HH, Brohus M, Nyegaard M, Overgaard MT. Front Mol Neurosci 11 396 (2018)
  28. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Feng C. Coord Chem Rev 256 393-411 (2012)
  29. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y, Pelton JG, Wemmer DE, Roose JP, Kuriyan J. Elife 2 e00813 (2013)
  30. Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. Petri ET, Celic A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME. Proc Natl Acad Sci U S A 107 9176-9181 (2010)
  31. Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system. Zhang H, Gau BC, Jones LM, Vidavsky I, Gross ML. Anal Chem 83 311-318 (2011)
  32. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II. Pepke S, Kinzer-Ursem T, Mihalas S, Kennedy MB. PLoS Comput Biol 6 e1000675 (2010)
  33. Ethanol modulates BKCa channels by acting as an adjuvant of calcium. Liu J, Vaithianathan T, Manivannan K, Parrill A, Dopico AM. Mol Pharmacol 74 628-640 (2008)
  34. Inherent flexibility determines the transition mechanisms of the EF-hands of calmodulin. Tripathi S, Portman JJ. Proc Natl Acad Sci U S A 106 2104-2109 (2009)
  35. Phosphorylated Calmodulin Promotes PI3K Activation by Binding to the SH2 Domains. Zhang M, Jang H, Gaponenko V, Nussinov R. Biophys J 113 1956-1967 (2017)
  36. Protein analysis by time-resolved measurements with an electro-switchable DNA chip. Langer A, Hampel PA, Kaiser W, Knezevic J, Welte T, Villa V, Maruyama M, Svejda M, Jähner S, Fischer F, Strasser R, Rant U. Nat Commun 4 2099 (2013)
  37. A unification of the elastic network model and the Gaussian network model for optimal description of protein conformational motions and fluctuations. Zheng W. Biophys J 94 3853-3857 (2008)
  38. Protein recognition and selection through conformational and mutually induced fit. Wang Q, Zhang P, Hoffman L, Tripathi S, Homouz D, Liu Y, Waxham MN, Cheung MS. Proc Natl Acad Sci U S A 110 20545-20550 (2013)
  39. The role of electrostatic interactions in calmodulin-peptide complex formation. André I, Kesvatera T, Jönsson B, Akerfeldt KS, Linse S. Biophys J 87 1929-1938 (2004)
  40. Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. Li J, Shang G, Chen YJ, Brautigam CA, Liou J, Zhang X, Bai XC. Elife 8 e47650 (2019)
  41. Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping. Sharp JS, Tomer KB. Biophys J 92 1682-1692 (2007)
  42. On the structural convergence of biomolecular simulations by determination of the effective sample size. Lyman E, Zuckerman DM. J Phys Chem B 111 12876-12882 (2007)
  43. Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform. Zhang B, Rempel DL, Gross ML. J Am Soc Mass Spectrom 27 552-555 (2016)
  44. A molecular dynamics study of the effect of Ca2+ removal on calmodulin structure. Project E, Friedman R, Nachliel E, Gutman M. Biophys J 90 3842-3850 (2006)
  45. Mass spectrometry-based carboxyl footprinting of proteins: method evaluation. Zhang H, Wen J, Huang RY, Blankenship RE, Gross ML. Int J Mass Spectrom 312 78-86 (2012)
  46. Protein structure prediction guided by crosslinking restraints--A systematic evaluation of the impact of the crosslinking spacer length. Hofmann T, Fischer AW, Meiler J, Kalkhof S. Methods 89 79-90 (2015)
  47. Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction. Jang H, Banerjee A, Chavan T, Gaponenko V, Nussinov R. J Biol Chem 292 12544-12559 (2017)
  48. Multiscale characterization of protein conformational ensembles. Shehu A, Kavraki LE, Clementi C. Proteins 76 837-851 (2009)
  49. Protein flexibility is key to cisplatin crosslinking in calmodulin. Li H, Wells SA, Jimenez-Roldan JE, Römer RA, Zhao Y, Sadler PJ, O'Connor PB. Protein Sci 21 1269-1279 (2012)
  50. De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media. Ruan K, Briggman KB, Tolman JR. J Biomol NMR 41 61-76 (2008)
  51. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin. Westerlund AM, Delemotte L. PLoS Comput Biol 14 e1006072 (2018)
  52. Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. Valeyev NV, Bates DG, Heslop-Harrison P, Postlethwaite I, Kotov NV, Kotov NV. BMC Syst Biol 2 48 (2008)
  53. StoneHinge: hinge prediction by network analysis of individual protein structures. Keating KS, Flores SC, Gerstein MB, Kuhn LA. Protein Sci 18 359-371 (2009)
  54. Structure determination of high-energy states in a dynamic protein ensemble. Stiller JB, Otten R, Häussinger D, Rieder PS, Theobald DL, Kern D. Nature 603 528-535 (2022)
  55. The crystal structures of semi-synthetic aequorins. Toma S, Chong KT, Nakagawa A, Teranishi K, Inouye S, Shimomura O. Protein Sci 14 409-416 (2005)
  56. Wiggle-predicting functionally flexible regions from primary sequence. Gu J, Gribskov M, Bourne PE. PLoS Comput Biol 2 e90 (2006)
  57. A tunable LIC1-adaptor interaction modulates dynein activity in a cargo-specific manner. Lee IG, Cason SE, Alqassim SS, Holzbaur ELF, Dominguez R. Nat Commun 11 5695 (2020)
  58. Calcium-induced folding of a fragment of calmodulin composed of EF-hands 2 and 3. Lakowski TM, Lee GM, Okon M, Reid RE, McIntosh LP. Protein Sci 16 1119-1132 (2007)
  59. Conformational heterogeneity of the calmodulin binding interface. Shukla D, Peck A, Pande VS. Nat Commun 7 10910 (2016)
  60. Arrhythmia mutations in calmodulin cause conformational changes that affect interactions with the cardiac voltage-gated calcium channel. Wang K, Holt C, Lu J, Brohus M, Larsen KT, Overgaard MT, Wimmer R, Van Petegem F. Proc Natl Acad Sci U S A 115 E10556-E10565 (2018)
  61. ClustENM: ENM-Based Sampling of Essential Conformational Space at Full Atomic Resolution. Kurkcuoglu Z, Bahar I, Doruker P. J Chem Theory Comput 12 4549-4562 (2016)
  62. Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links. Ding YH, Gong Z, Dong X, Liu K, Liu Z, Liu C, He SM, Dong MQ, Tang C. J Biol Chem 292 1187-1196 (2017)
  63. Multiscale dynamics of macromolecules using normal mode Langevin. Izaguirre JA, Sweet CR, Pande VS. Pac Symp Biocomput 240-251 (2010)
  64. Painting proteins blue: β-(1-azulenyl)-L-alanine as a probe for studying protein-protein interactions. Moroz YS, Binder W, Nygren P, Caputo GA, Korendovych IV. Chem Commun (Camb) 49 490-492 (2013)
  65. Thermodynamic effects of noncoded and coded methionine substitutions in calmodulin. Yamniuk AP, Ishida H, Lippert D, Vogel HJ. Biophys J 96 1495-1507 (2009)
  66. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier. Harborne SP, Ruprecht JJ, Kunji ER. Biochim Biophys Acta 1847 1245-1253 (2015)
  67. Coordination to lanthanide ions distorts binding site conformation in calmodulin. Edington SC, Gonzalez A, Middendorf TR, Halling DB, Aldrich RW, Baiz CR. Proc Natl Acad Sci U S A 115 E3126-E3134 (2018)
  68. Protein aggregation/folding: the role of deterministic singularities of sequence hydrophobicity as determined by nonlinear signal analysis of acylphosphatase and Abeta(1-40). Zbilut JP, Colosimo A, Conti F, Colafranceschi M, Manetti C, Valerio M, Webber CL, Giuliani A. Biophys J 85 3544-3557 (2003)
  69. Coexistence of two protein folding states in the crystal structure of ribosomal protein L20. Timsit Y, Allemand F, Chiaruttini C, Springer M. EMBO Rep 7 1013-1018 (2006)
  70. Molecular mechanism of multispecific recognition of Calmodulin through conformational changes. Liu F, Chu X, Lu HP, Wang J. Proc Natl Acad Sci U S A 114 E3927-E3934 (2017)
  71. The Structural Basis of the Farnesylated and Methylated KRas4B Interaction with Calmodulin. Jang H, Banerjee A, Marcus K, Makowski L, Mattos C, Gaponenko V, Nussinov R. Structure 27 1647-1659.e4 (2019)
  72. Communication: Capturing protein multiscale thermal fluctuations. Opron K, Xia K, Wei GW. J Chem Phys 142 211101 (2015)
  73. NMR hawk-eyed view of AlphaFold2 structures. Zweckstetter M. Protein Sci 30 2333-2337 (2021)
  74. Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation. Moree B, Connell K, Mortensen RB, Liu CT, Benkovic SJ, Salafsky J. Biophys J 109 806-815 (2015)
  75. Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis. O'Brien DP, Durand D, Voegele A, Hourdel V, Davi M, Chamot-Rooke J, Vachette P, Brier S, Ladant D, Chenal A. PLoS Biol 15 e2004486 (2017)
  76. Homology modeling identifies C-terminal residues that contribute to the Ca2+ sensitivity of a BKCa channel. Sheng JZ, Weljie A, Sy L, Ling S, Vogel HJ, Braun AP. Biophys J 89 3079-3092 (2005)
  77. Optimized torsion-angle normal modes reproduce conformational changes more accurately than cartesian modes. Bray JK, Weiss DR, Levitt M. Biophys J 101 2966-2969 (2011)
  78. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel NaV1.2. Hovey L, Fowler CA, Mahling R, Lin Z, Miller MS, Marx DC, Yoder JB, Kim EH, Tefft KM, Waite BC, Feldkamp MD, Yu L, Shea MA. Biophys Chem 224 1-19 (2017)
  79. Calmodulin disrupts the structure of the HIV-1 MA protein. Chow JY, Jeffries CM, Kwan AH, Guss JM, Trewhella J. J Mol Biol 400 702-714 (2010)
  80. Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles. Schneidman-Duhovny D, Hammel M. Methods Mol Biol 1764 449-473 (2018)
  81. Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin. Feldkamp MD, O'Donnell SE, Yu L, Shea MA. Proteins 78 2265-2282 (2010)
  82. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins. Romano DR, Pharris MC, Patel NM, Kinzer-Ursem TL. PLoS Comput Biol 13 e1005820 (2017)
  83. General library-based Monte Carlo technique enables equilibrium sampling of semi-atomistic protein models. Mamonov AB, Bhatt D, Cashman DJ, Ding Y, Zuckerman DM. J Phys Chem B 113 10891-10904 (2009)
  84. MovieMaker: a web server for rapid rendering of protein motions and interactions. Maiti R, Van Domselaar GH, Wishart DS. Nucleic Acids Res 33 W358-62 (2005)
  85. Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM). Xia K, Opron K, Wei GW. J Chem Phys 143 204106 (2015)
  86. Protein-Metal-Ion Interactions Studied by Mass Spectrometry-Based Footprinting with Isotope-Encoded Benzhydrazide. Guo C, Cheng M, Gross ML. Anal Chem 91 1416-1423 (2019)
  87. Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics. Gong Z, Schwieters CD, Tang C. Methods 148 48-56 (2018)
  88. A 1.3-A structure of zinc-bound N-terminal domain of calmodulin elucidates potential early ion-binding step. Warren JT, Guo Q, Tang WJ. J Mol Biol 374 517-527 (2007)
  89. Automated sampling assessment for molecular simulations using the effective sample size. Zhang X, Bhatt D, Zuckerman DM. J Chem Theory Comput 6 3048-3057 (2010)
  90. Bayesian inference of protein conformational ensembles from limited structural data. Potrzebowski W, Trewhella J, Andre I. PLoS Comput Biol 14 e1006641 (2018)
  91. Bilobal architecture is a requirement for calmodulin signaling to CaV1.3 channels. Banerjee R, Yoder JB, Yue DT, Amzel LM, Tomaselli GF, Gabelli SB, Ben-Johny M. Proc Natl Acad Sci U S A 115 E3026-E3035 (2018)
  92. Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins. Slavov N, Carey J, Linse S. ACS Chem Neurosci 4 601-612 (2013)
  93. Computational Discovery of Putative Leads for Drug Repositioning through Drug-Target Interaction Prediction. Coelho ED, Arrais JP, Oliveira JL. PLoS Comput Biol 12 e1005219 (2016)
  94. Conformational contribution to thermodynamics of binding in protein-peptide complexes through microscopic simulation. Das A, Chakrabarti J, Ghosh M. Biophys J 104 1274-1284 (2013)
  95. Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding. Wang S, Gu J, Larson SA, Whitten ST, Hilser VJ. J Mol Biol 381 1184-1201 (2008)
  96. EVOLUTIONARY DE RHAM-HODGE METHOD. Chen J, Zhao R, Tong Y, Wei GW. Discrete Continuous Dyn Syst Ser B 26 3785-3821 (2021)
  97. Structure and calcium-binding studies of calmodulin-like domain of human non-muscle α-actinin-1. Drmota Prebil S, Slapšak U, Pavšič M, Ilc G, Puž V, de Almeida Ribeiro E, Anrather D, Hartl M, Backman L, Plavec J, Lenarčič B, Djinović-Carugo K. Sci Rep 6 27383 (2016)
  98. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization. Larson SA, Hilser VJ. Protein Sci 13 1787-1801 (2004)
  99. Structure and location of the regulatory β subunits in the (αβγδ)4 phosphorylase kinase complex. Nadeau OW, Lane LA, Xu D, Sage J, Priddy TS, Artigues A, Villar MT, Yang Q, Robinson CV, Zhang Y, Carlson GM. J Biol Chem 287 36651-36661 (2012)
  100. The motif of human cardiac myosin-binding protein C is required for its Ca2+-dependent interaction with calmodulin. Lu Y, Kwan AH, Jeffries CM, Guss JM, Trewhella J. J Biol Chem 287 31596-31607 (2012)
  101. The number and location of EF hand motifs dictates the calcium dependence of polycystin-2 function. Kuo IY, Keeler C, Corbin R, Ćelić A, Petri ET, Hodsdon ME, Ehrlich BE. FASEB J 28 2332-2346 (2014)
  102. An Activity-Based Methionine Bioconjugation Approach To Developing Proximity-Activated Imaging Reporters. Ohata J, Krishnamoorthy L, Krishnamoorthy L, Gonzalez MA, Xiao T, Iovan DA, Toste FD, Miller EW, Chang CJ. ACS Cent Sci 6 32-40 (2020)
  103. An adaptive weighted ensemble procedure for efficient computation of free energies and first passage rates. Bhatt D, Bahar I. J Chem Phys 137 104101 (2012)
  104. Specific and non-specific protein association in solution: computation of solvent effects and prediction of first-encounter modes for efficient configurational bias Monte Carlo simulations. Cardone A, Pant H, Hassan SA. J Phys Chem B 117 12360-12374 (2013)
  105. The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish. Berchtold MW, Zacharias T, Kulej K, Wang K, Torggler R, Jespersen T, Chen JN, Larsen MR, la Cour JM. J Biol Chem 291 26636-26646 (2016)
  106. X-ray structure of Danio rerio secretagogin: A hexa-EF-hand calcium sensor. Bitto E, Bingman CA, Bittova L, Frederick RO, Fox BG, Phillips GN. Proteins 76 477-483 (2009)
  107. Calmodulin binds a highly extended HIV-1 MA protein that refolds upon its release. Taylor JEN, Chow JYH, Jeffries CM, Kwan AH, Duff AP, Hamilton WA, Trewhella J. Biophys J 103 541-549 (2012)
  108. Dissociation of calmodulin-target peptide complexes by the lipid mediator sphingosylphosphorylcholine: implications in calcium signaling. Kovacs E, Tóth J, Vértessy BG, Liliom K. J Biol Chem 285 1799-1808 (2010)
  109. FRET-FCS detection of intralobe dynamics in calmodulin. Price ES, Aleksiejew M, Johnson CK. J Phys Chem B 115 9320-9326 (2011)
  110. Infanticide vs. inherited cardiac arrhythmias. Brohus M, Arsov T, Wallace DA, Jensen HH, Nyegaard M, Crotti L, Adamski M, Zhang Y, Field MA, Athanasopoulos V, Baró I, Ribeiro de Oliveira-Mendes BB, Redon R, Charpentier F, Raju H, DiSilvestre D, Wei J, Wang R, Rafehi H, Kaspi A, Bahlo M, Dick IE, Chen SRW, Cook MC, Vinuesa CG, Overgaard MT, Schwartz PJ. Europace 23 441-450 (2021)
  111. Single molecule analyses of the conformational substates of calmodulin bound to the phosphorylase kinase complex. Priddy TS, Price ES, Johnson CK, Carlson GM. Protein Sci 16 1017-1023 (2007)
  112. Structural characterization of the interaction of human lactoferrin with calmodulin. Gifford JL, Ishida H, Vogel HJ. PLoS One 7 e51026 (2012)
  113. An altered mode of calcium coordination in methionine-oxidized calmodulin. Jones EM, Squier TC, Sacksteder CA. Biophys J 95 5268-5280 (2008)
  114. Calmodulin (CaM) Activates PI3Kα by Targeting the "Soft" CaM-Binding Motifs in Both the nSH2 and cSH2 Domains of p85α. Zhang M, Li Z, Wang G, Jang H, Sacks DB, Zhang J, Gaponenko V, Nussinov R. J Phys Chem B 122 11137-11146 (2018)
  115. Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis. Gutiérrez-Fernández J, Saleh M, Alcorlo M, Gómez-Mejía A, Pantoja-Uceda D, Treviño MA, Voß F, Abdullah MR, Galán-Bartual S, Seinen J, Sánchez-Murcia PA, Gago F, Bruix M, Hammerschmidt S, Hermoso JA. Sci Rep 6 38094 (2016)
  116. Calmodulin has the Potential to Function as a Ca-Dependent Adaptor Protein. Yamniuk AP, Rainaldi M, Vogel HJ. Plant Signal Behav 2 354-357 (2007)
  117. Conformational frustration in calmodulin-target recognition. Tripathi S, Wang Q, Zhang P, Hoffman L, Waxham MN, Cheung MS. J Mol Recognit 28 74-86 (2015)
  118. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker. Jeong WH, Lee H, Song DH, Eom JH, Kim SC, Lee HS, Lee H, Lee JO. Nat Commun 7 11031 (2016)
  119. Design of an allosterically regulated retroaldolase. Raymond EA, Mack KL, Yoon JH, Moroz OV, Moroz YS, Korendovych IV. Protein Sci 24 561-570 (2015)
  120. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding. Yperman K, Papageorgiou AC, Merceron R, De Munck S, Bloch Y, Eeckhout D, Jiang Q, Tack P, Grigoryan R, Evangelidis T, Van Leene J, Vincze L, Vandenabeele P, Vanhaecke F, Potocký M, De Jaeger G, Savvides SN, Tripsianes K, Pleskot R, Van Damme D. Nat Commun 12 3050 (2021)
  121. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method. Molloy K, Shehu A. BMC Struct Biol 13 Suppl 1 S8 (2013)
  122. FlexE: Using elastic network models to compare models of protein structure. Perez A, Yang Z, Bahar I, Dill KA, MacCallum JL. J Chem Theory Comput 8 3985-3991 (2012)
  123. Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner. Piirainen H, Hellman M, Tossavainen H, Permi P, Kursula P, Jaakola VP. Biophys J 108 903-917 (2015)
  124. Mapping conformational dynamics of proteins using torsional dynamics simulations. Gangupomu VK, Wagner JR, Park IH, Jain A, Vaidehi N. Biophys J 104 1999-2008 (2013)
  125. Comment The International Calmodulinopathy Registry: recording the diverse phenotypic spectrum of un-CALM hearts. Nyegaard M, Overgaard MT. Eur Heart J 40 2976-2978 (2019)
  126. A High-Affinity Calmodulin-Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells. Voegele A, Sadi M, O'Brien DP, Gehan P, Raoux-Barbot D, Davi M, Hoos S, Brûlé S, Raynal B, Weber P, Mechaly A, Haouz A, Rodriguez N, Vachette P, Durand D, Brier S, Ladant D, Chenal A. Adv Sci (Weinh) 8 2003630 (2021)
  127. A mass weighted chemical elastic network model elucidates closed form domain motions in proteins. Kim MH, Seo S, Jeong JI, Kim BJ, Liu WK, Lim BS, Choi JB, Kim MK. Protein Sci 22 605-613 (2013)
  128. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs. Kellmann SJ, Dübel S, Thie H. MAbs 9 404-418 (2017)
  129. Correlating Calmodulin Landscapes with Chemical Catalysis in Neuronal Nitric Oxide Synthase using Time-Resolved FRET and a 5-Deazaflavin Thermodynamic Trap. Hedison TM, Leferink NG, Hay S, Scrutton NS. ACS Catal 6 5170-5180 (2016)
  130. Emerging area: biomaterials that mimic and exploit protein motion. Murphy WL. Soft Matter 7 3679-3688 (2011)
  131. Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. Isvoran A, Badel A, Craescu CT, Miron S, Miteva MA. BMC Struct Biol 11 24 (2011)
  132. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins. Kurkcuoglu Z, Doruker P. PLoS One 11 e0158063 (2016)
  133. Multi-state design of flexible proteins predicts sequences optimal for conformational change. Sauer MF, Sevy AM, Crowe JE, Meiler J. PLoS Comput Biol 16 e1007339 (2020)
  134. Prediction of volatile anesthetic binding sites in proteins. Streiff JH, Allen TW, Atanasova E, Juranic N, Macura S, Penheiter AR, Jones KA. Biophys J 91 3405-3414 (2006)
  135. Protein flexibility: coordinate uncertainties and interpretation of structural differences. Rashin AA, Rashin AH, Jernigan RL. Acta Crystallogr D Biol Crystallogr 65 1140-1161 (2009)
  136. Structural Evaluation of Protein/Metal Complexes via Native Electrospray Ultraviolet Photodissociation Mass Spectrometry. Crittenden CM, Novelli ET, Mehaffey MR, Xu GN, Giles DH, Fies WA, Dalby KN, Webb LJ, Brodbelt JS. J Am Soc Mass Spectrom 31 1140-1150 (2020)
  137. Diversity of function-related conformational changes in proteins: coordinate uncertainty, fragment rigidity, and stability. Rashin AA, Rashin AH, Jernigan RL. Biochemistry 49 5683-5704 (2010)
  138. Molecular Insights into the Mechanism of Calmodulin Inhibition of the EAG1 Potassium Channel. Marques-Carvalho MJ, Oppermann J, Muñoz E, Fernandes AS, Gabant G, Cadene M, Heinemann SH, Schönherr R, Morais-Cabral JH. Structure 24 1742-1754 (2016)
  139. Using least median of squares for structural superposition of flexible proteins. Liu YS, Fang Y, Ramani K. BMC Bioinformatics 10 29 (2009)
  140. Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps. Habeck M. Front Mol Biosci 4 15 (2017)
  141. Conformational Ensembles of Calmodulin Revealed by Nonperturbing Site-Specific Vibrational Probe Groups. Kelly KL, Dalton SR, Wai RB, Ramchandani K, Xu RJ, Linse S, Londergan CH. J Phys Chem A 122 2947-2955 (2018)
  142. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, Raoux-Barbot D, Davi M, Hoos S, Weber P, Vachette P, Durand D, Haouz A, Guijarro JI, Ladant D, Chenal A. BMC Biol 20 176 (2022)
  143. Molecular Dynamics Study of the Changes in Conformation of Calmodulin with Calcium Binding and/or Target Recognition. Kawasaki H, Soma N, Kretsinger RH. Sci Rep 9 10688 (2019)
  144. Opposing Intermolecular Tuning of Ca2+ Affinity for Calmodulin by Neurogranin and CaMKII Peptides. Zhang P, Tripathi S, Trinh H, Cheung MS. Biophys J 112 1105-1119 (2017)
  145. Resolved Structural States of Calmodulin in Regulation of Skeletal Muscle Calcium Release. McCarthy MR, Savich Y, Cornea RL, Thomas DD. Biophys J 118 1090-1100 (2020)
  146. SCEDS: protein fragments for molecular replacement in Phaser. McCoy AJ, Nicholls RA, Schneider TR. Acta Crystallogr D Biol Crystallogr 69 2216-2225 (2013)
  147. Solution structure of the Apo C-terminal domain of the Lethocerus F1 troponin C isoform. De Nicola GF, Martin S, Bullard B, Pastore A. Biochemistry 49 1719-1726 (2010)
  148. The Ca(2+) influence on calmodulin unfolding pathway: a steered molecular dynamics simulation study. Zhang Y, Lou J. PLoS One 7 e49013 (2012)
  149. The exchanged EF-hands in calmodulin and troponin C chimeras impair the Ca²⁺-induced hydrophobicity and alter the interaction with Orai1: a spectroscopic, thermodynamic and kinetic study. Jensen D, Reynolds N, Yang YP, Shakya S, Wang ZQ, Stuehr DJ, Wei CC. BMC Biochem 16 6 (2015)
  150. The structural basis of Akt PH domain interaction with calmodulin. Weako J, Jang H, Keskin O, Nussinov R, Gursoy A. Biophys J 120 1994-2008 (2021)
  151. A real-time all-atom structural search engine for proteins. Gonzalez G, Hannigan B, DeGrado WF. PLoS Comput Biol 10 e1003750 (2014)
  152. Ca2+-saturated calmodulin binds tightly to the N-terminal domain of A-type fibroblast growth factor homologous factors. Mahling R, Rahlf CR, Hansen SC, Hayden MR, Shea MA. J Biol Chem 296 100458 (2021)
  153. Local isotropic diffusion approximation for coupled internal and overall molecular motions in NMR spin relaxation. Gill ML, Palmer AG. J Phys Chem B 118 11120-11128 (2014)
  154. Computing energy landscape maps and structural excursions of proteins. Sapin E, Carr DB, De Jong KA, Shehu A. BMC Genomics 17 Suppl 4 546 (2016)
  155. Determining the atomic charge of calcium ion requires the information of its coordination geometry in an EF-hand motif. Zhang P, Han J, Cieplak P, Cheung MS. J Chem Phys 154 124104 (2021)
  156. Domain-Based Protein Docking with Extremely Large Conformational Changes. Christoffer C, Kihara D. J Mol Biol 434 167820 (2022)
  157. EFCAB2 is a novel calcium-binding protein in mouse testis and sperm. Shawki HH, Ishikawa-Yamauchi Y, Kawashima A, Katoh Y, Matsuda M, Al-Soudy AS, Minisy FM, Kuno A, Gulibaikelamu X, Hirokawa T, Takahashi S, Oishi H. PLoS One 14 e0214687 (2019)
  158. Evaluation of the relative stability of liganded versus ligand-free protein conformations using Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method. Sherman DB, Zhang S, Pitner JB, Tropsha A. Proteins 56 828-838 (2004)
  159. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry. Zheng Q, Zhang H, Wu S, Chen H. J Am Soc Mass Spectrom 27 864-875 (2016)
  160. Protocol for analyzing protein ensemble structures from chemical cross-links using DynaXL. Gong Z, Liu Z, Dong X, Ding YH, Dong MQ, Tang C. Biophys Rep 3 100-108 (2017)
  161. Solution NMR structure of the Ca2+-bound N-terminal domain of CaBP7: a regulator of golgi trafficking. McCue HV, Patel P, Herbert AP, Lian LY, Burgoyne RD, Haynes LP. J Biol Chem 287 38231-38243 (2012)
  162. Structural dynamics of calmodulin-ryanodine receptor interactions: electron paramagnetic resonance using stereospecific spin labels. Her C, Thompson AR, Karim CB, Thomas DD. Sci Rep 8 10681 (2018)
  163. Amino acid torsion angles enable prediction of protein fold classification. Tian K, Zhao X, Wan X, Yau SS. Sci Rep 10 21773 (2020)
  164. Challenges and Opportunities in Brain Bioinorganic Chemistry. Goldberg JM, Lippard SJ. Acc Chem Res 50 577-579 (2017)
  165. Distinguishing unfolding and functional conformational transitions of calmodulin using ultraviolet resonance Raman spectroscopy. Jones EM, Balakrishnan G, Squier TC, Spiro TG. Protein Sci 23 1094-1101 (2014)
  166. Dynamic Na+/H+ exchanger 1 (NHE1) - calmodulin complexes of varying stoichiometry and structure regulate Ca2+-dependent NHE1 activation. Sjøgaard-Frich LM, Prestel A, Pedersen ES, Severin M, Kristensen KK, Olsen JG, Kragelund BB, Pedersen SF. Elife 10 e60889 (2021)
  167. Functional manipulation of a calcium-binding protein from Entamoeba histolytica guided by paramagnetic NMR. Rout AK, Patel S, Somlata, Shukla M, Saraswathi D, Bhattacharya A, Chary KV. J Biol Chem 288 23473-23487 (2013)
  168. Interpenetrating Cubes in the X-ray Crystallographic Structure of a Peptide Derived from Medin19-36. Howitz WJ, Wierzbicki M, Cabanela RW, Saliba C, Motavalli A, Tran N, Nowick JS. J Am Chem Soc 142 15870-15875 (2020)
  169. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy. Devore MS, Gull SF, Johnson CK. Chem Phys 422 (2013)
  170. Redox-Responsive Protein Design: Design of a Small Protein Motif Dependent on Glutathionylation. Scheuermann MJ, Forbes CR, Zondlo NJ. Biochemistry 57 6956-6963 (2018)
  171. The mechanism of complex formation between calmodulin and voltage gated calcium channels revealed by molecular dynamics. Yaduvanshi S, Ero R, Kumar V. PLoS One 16 e0258112 (2021)
  172. Binding Energy and Free Energy of Calcium Ion to Calmodulin EF-Hands with the Drude Polarizable Force Field. Tan Q, Ding Y, Qiu Z, Huang J. ACS Phys Chem Au 2 143-155 (2022)
  173. Bisindolylmaleimides New Ligands of CaM Protein. Sosa-Peinado A, Fructuoso-García K, Vásquez-Bochm LX, González-Andrade M. Molecules 27 7161 (2022)
  174. Coarse-Grained Modeling and Molecular Dynamics Simulations of Ca2+-Calmodulin. Nde J, Zhang P, Ezerski JC, Lu W, Knapp K, Wolynes PG, Cheung MS. Front Mol Biosci 8 661322 (2021)
  175. Combined Pulsed Electron Double Resonance EPR and Molecular Dynamics Investigations of Calmodulin Suggest Effects of Crowding Agents on Protein Structures. Stewart AM, Shanmugam M, Kutta RJ, Scrutton NS, Lovett JE, Hay S. Biochemistry 61 1735-1742 (2022)
  176. Design of a Protein Motif Responsive to Tyrosine Nitration and an Encoded Turn-Off Sensor of Tyrosine Nitration. Urmey AR, Zondlo NJ. Biochemistry 58 2822-2833 (2019)
  177. Next generation calmodulin affinity purification: Clickable calmodulin facilitates improved protein purification. Fraseur JG, Kinzer-Ursem TL. PLoS One 13 e0197120 (2018)
  178. Structure of androcam supports specialized interactions with myosin VI. Joshi MK, Moran S, Beckingham KM, MacKenzie KR. Proc Natl Acad Sci U S A 109 13290-13295 (2012)
  179. Alterations in calmodulin-cardiac ryanodine receptor molecular recognition in congenital arrhythmias. Dal Cortivo G, Barracchia CG, Marino V, D'Onofrio M, Dell'Orco D. Cell Mol Life Sci 79 127 (2022)
  180. Automated Specific Amino Acid Footprinting Mass Spectrometry: Repurposing an HDX Platform for Determining Reagent Feasibility. Wagner ND, Moyle AB, Rincon Pabon JP, Gross ML. Anal Chem 94 10314-10319 (2022)
  181. Calmodulin extracts the Ras family protein RalA from lipid bilayers by engagement with two membrane-targeting motifs. Chamberlain SG, Gohlke A, Shafiq A, Squires IJ, Owen D, Mott HR. Proc Natl Acad Sci U S A 118 e2104219118 (2021)
  182. Calmodulin mutations affecting Gly114 impair binding to the NaV1.5 IQ-domain. Brohus M, Busuioc AO, Wimmer R, Nyegaard M, Overgaard MT. Front Pharmacol 14 1210140 (2023)
  183. Chelator-Based Parameterization of the 12-6-4 Lennard-Jones Molecular Mechanics Potential for More Realistic Metal Ion-Protein Interactions. Kantakevičius P, Mathiah C, Johannissen LO, Hay S. J Chem Theory Comput 18 2367-2374 (2022)
  184. Computational prediction of hinge axes in proteins. Shamsuddin R, Doktorova M, Jaswal S, Lee-St John A, McMenimen K. BMC Bioinformatics 15 Suppl 8 S2 (2014)
  185. Design and Experimental Evaluation of a Peptide Antagonist against Amyloid β(1-42) Interactions with Calmodulin and Calbindin-D28k. Salazar J, Poejo J, Mata AM, Samhan-Arias AK, Gutierrez-Merino C. Int J Mol Sci 23 2289 (2022)
  186. Graph identification of proteins in tomograms (GRIP-Tomo). George A, Kim DN, Moser T, Gildea IT, Evans JE, Cheung MS. Protein Sci 32 e4538 (2023)
  187. Human calmodulin mutations cause arrhythmia and affect neuronal function in C. elegans. Jensen HH, Frantzen MT, Wesseltoft JL, Busuioc AO, Møller KV, Brohus M, Duun PR, Nyegaard M, Overgaard MT, Olsen A. Hum Mol Genet 32 2068-2083 (2023)
  188. Identification of the Calmodulin-Binding Domains of Fas Death Receptor. Chang BJ, Samal AB, Vlach J, Fernandez TF, Brooke D, Prevelige PE, Saad JS. PLoS One 11 e0146493 (2016)
  189. Maintaining and Enhancing Diversity of Sampled Protein Conformations in Robotics-Inspired Methods. Abella JR, Moll M, Kavraki LE. J Comput Biol 25 3-20 (2018)
  190. Met125 is essential for maintaining the structural integrity of calmodulin's C-terminal domain. Nelson SED, Weber DK, Rebbeck RT, Cornea RL, Veglia G, Thomas DD. Sci Rep 10 21320 (2020)
  191. Plausible computational insights and new atomic-level perspective of epicathechin gallate from Crataegus oxycantha extract in preventing caspase 3 activation in conditions like post-myocardial infarction. Ravindran ASK, Venkatabalasubramanian S, Manickam R, Anusuyadevi M, K Swaminathan J. J Biomol Struct Dyn 40 3400-3415 (2022)
  192. Unique methionine-aromatic interactions govern the calmodulin redox sensor. Walgenbach DG, Gregory AJ, Klein JC. Biochem Biophys Res Commun 505 236-241 (2018)
  193. A Free-Energy Landscape Analysis of Calmodulin Obtained from an NMR Data-Utilized Multi-Scale Divide-and-Conquer Molecular Dynamics Simulation. Shimoyama H, Shigeta Y. Life (Basel) 11 1241 (2021)
  194. Arrhythmia-Associated Calmodulin E105A Mutation Alters the Binding Affinity of CaM to a Ryanodine Receptor 2 CaM-Binding Pocket. Thanassoulas A, Theodoridou M, Barrak L, Riguene E, Alyaarabi T, Elrayess MA, Lai FA, Nomikos M. Int J Mol Sci 24 15630 (2023)
  195. Calcium dependence of both lobes of calmodulin is involved in binding to a cytoplasmic domain of SK channels. Halling DB, Philpo AE, Aldrich RW. Elife 11 e81303 (2022)
  196. Calmodulin variants associated with congenital arrhythmia impair selectivity for ryanodine receptors. Dal Cortivo G, Marino V, Bianconi S, Dell'Orco D. Front Mol Biosci 9 1100992 (2022)
  197. Decreased Interactions between Calmodulin and a Mutant Huntingtin Model Might Reduce the Cytotoxic Level of Intracellular Ca2+: A Molecular Dynamics Study. Moldovean SN, Chiş V. Int J Mol Sci 22 9025 (2021)
  198. Detecting intermediate protein conformations using algebraic topology. Haspel N, Luo D, González E. BMC Bioinformatics 18 502 (2017)
  199. Engagement of intrinsic disordered proteins in protein-protein interaction. Roterman I, Stapor K, Konieczny L. Front Mol Biosci 10 1230922 (2023)
  200. Improved Synthesis of 2-Trifluoromethyl-10-aminopropylphenothiazine: Making 2-Trifluoromethyl-10-aminopropylphenothiazine Readily Available for Calmodulin Purification. Johnson JW, Cain KW, Dunlap TB, Naumiec GR. ACS Omega 3 16309-16313 (2018)
  201. K-Ras Binds Calmodulin-Related Centrin1 with Potential Implications for K-Ras Driven Cancer Cell Stemness. Manoharan GB, Laurini C, Bottone S, Ben Fredj N, Abankwa DK. Cancers (Basel) 15 3087 (2023)
  202. Markov state modelling reveals heterogeneous drug-inhibition mechanism of Calmodulin. Westerlund AM, Sridhar A, Dahl L, Andersson A, Bodnar AY, Delemotte L. PLoS Comput Biol 18 e1010583 (2022)
  203. Structural and biochemical insights into Zn2+-bound EF-hand proteins, EFhd1 and EFhd2. Mun SA, Park J, Kang JY, Park T, Jin M, Yang J, Eom SH. IUCrJ 10 233-245 (2023)
  204. Towards accurate modeling of noncovalent interactions for protein rigidity analysis. Fox N, Streinu I. BMC Bioinformatics 14 Suppl 18 S3 (2013)


Reviews citing this publication (31)

  1. Dynamic personalities of proteins. Henzler-Wildman K, Kern D. Nature 450 964-972 (2007)
  2. The thioredoxin system--from science to clinic. Gromer S, Urig S, Becker K. Med Res Rev 24 40-89 (2004)
  3. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J Mol Biol 359 509-525 (2006)
  4. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Yamniuk AP, Vogel HJ. Mol Biotechnol 27 33-57 (2004)
  5. Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. Maier LS, Bers DM. J Mol Cell Cardiol 34 919-939 (2002)
  6. Molecular tuning of ion binding to calcium signaling proteins. Falke JJ, Drake SK, Hazard AL, Peersen OB. Q Rev Biophys 27 219-290 (1994)
  7. Adaptable hydrogel networks with reversible linkages for tissue engineering. Wang H, Heilshorn SC. Adv Mater 27 3717-3736 (2015)
  8. Structural diversity of calmodulin binding to its target sites. Tidow H, Nissen P. FEBS J 280 5551-5565 (2013)
  9. Target selectivity in EF-hand calcium binding proteins. Bhattacharya S, Bunick CG, Chazin WJ. Biochim Biophys Acta 1742 69-79 (2004)
  10. Guanylate cyclase-activating proteins: structure, function, and diversity. Palczewski K, Sokal I, Baehr W. Biochem Biophys Res Commun 322 1123-1130 (2004)
  11. The ever changing moods of calmodulin: how structural plasticity entails transductional adaptability. Villarroel A, Taglialatela M, Bernardo-Seisdedos G, Alaimo A, Agirre J, Alberdi A, Gomis-Perez C, Soldovieri MV, Ambrosino P, Malo C, Areso P. J Mol Biol 426 2717-2735 (2014)
  12. Calmodulin and the regulation of smooth muscle contraction. Walsh MP. Mol Cell Biochem 135 21-41 (1994)
  13. The evolving model of calmodulin structure, function and activation. Finn BE, Forsén S. Structure 3 7-11 (1995)
  14. Structure-function relationships in Ca(2+) cycling proteins. MacLennan DH, Abu-Abed M, Kang C. J Mol Cell Cardiol 34 897-918 (2002)
  15. Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes. Saucerman JJ, Bers DM. J Mol Cell Cardiol 52 312-316 (2012)
  16. SAIL--stereo-array isotope labeling. Kainosho M, Güntert P. Q Rev Biophys 42 247-300 (2009)
  17. Neuronal Ca2+ signaling via caldendrin and calneurons. Mikhaylova M, Sharma Y, Reissner C, Nagel F, Aravind P, Rajini B, Smalla KH, Gundelfinger ED, Kreutz MR. Biochim Biophys Acta 1763 1229-1237 (2006)
  18. Calcium. Evenäs J, Malmendal A, Forsén S. Curr Opin Chem Biol 2 293-302 (1998)
  19. EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. Capozzi F, Casadei F, Luchinat C. J Biol Inorg Chem 11 949-962 (2006)
  20. NMR studies of dynamic biomolecular conformational ensembles. Torchia DA. Prog Nucl Magn Reson Spectrosc 84-85 14-32 (2015)
  21. Defining potential roles of Pb(2+) in neurotoxicity from a calciomics approach. Gorkhali R, Huang K, Kirberger M, Yang JJ. Metallomics 8 563-578 (2016)
  22. Proteins with calmodulin-like domains: structures and functional roles. Villalobo A, González-Muñoz M, Berchtold MW. Cell Mol Life Sci 76 2299-2328 (2019)
  23. Structural Aspects and Prediction of Calmodulin-Binding Proteins. Andrews C, Xu Y, Kirberger M, Yang JJ. Int J Mol Sci 22 E308 (2020)
  24. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome. Squier TC. Antioxid Redox Signal 8 217-228 (2006)
  25. Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling. Bossuyt J, Bers DM. J Mol Med (Berl) 91 907-916 (2013)
  26. Mass spectrometry in aging research. Schöneich C. Mass Spectrom Rev 24 701-718 (2005)
  27. Distinctive Properties and Powerful Neuromodulation of Nav1.6 Sodium Channels Regulates Neuronal Excitability. Zybura A, Hudmon A, Cummins TR. Cells 10 1595 (2021)
  28. Seeing the invisible by paramagnetic and diamagnetic NMR. Clore GM. Biochem Soc Trans 41 1343-1354 (2013)
  29. Role of calcium in membrane interactions by PI(4,5)P₂-binding proteins. Monteiro ME, Sarmento MJ, Fernandes F. Biochem Soc Trans 42 1441-1446 (2014)
  30. The Complex Conformational Dynamics of Neuronal Calcium Sensor-1: A Single Molecule Perspective. Choudhary D, Kragelund BB, Heidarsson PO, Cecconi C. Front Mol Neurosci 11 468 (2018)
  31. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Lin Y, Gross ML. Biomolecules 12 135 (2022)

Articles citing this publication (241)

  1. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Cornilescu G, Delaglio F, Bax A. J Biomol NMR 13 289-302 (1999)
  2. Developing a molecular dynamics force field for both folded and disordered protein states. Robustelli P, Piana S, Shaw DE. Proc Natl Acad Sci U S A 115 E4758-E4766 (2018)
  3. Optimal isotope labelling for NMR protein structure determinations. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Güntert P. Nature 440 52-57 (2006)
  4. Calmodulin mutations associated with recurrent cardiac arrest in infants. Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, Papagiannis J, Feldkamp MD, Rathi SG, Kunic JD, Pedrazzini M, Wieland T, Lichtner P, Beckmann BM, Clark T, Shaffer C, Benson DW, Kääb S, Meitinger T, Strom TM, Chazin WJ, Schwartz PJ, George AL. Circulation 127 1009-1017 (2013)
  5. Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mechanism. Whicher JR, MacKinnon R. Science 353 664-669 (2016)
  6. Calcium-induced structural changes and domain autonomy in calmodulin. Finn BE, Evenäs J, Drakenberg T, Waltho JP, Thulin E, Forsén S. Nat Struct Biol 2 777-783 (1995)
  7. The 1.0 A crystal structure of Ca(2+)-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. Wilson MA, Brunger AT. J Mol Biol 301 1237-1256 (2000)
  8. A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase. Li G, Cui Q. Biophys J 83 2457-2474 (2002)
  9. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Wernimont AK, Artz JD, Finerty P, Lin YH, Amani M, Allali-Hassani A, Senisterra G, Vedadi M, Tempel W, Mackenzie F, Chau I, Lourido S, Sibley LD, Hui R. Nat Struct Mol Biol 17 596-601 (2010)
  10. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann BM, Roh MS, Shigemizu D, Lichtner P, Ishikawa T, Aiba T, Homfray T, Behr ER, Klug D, Denjoy I, Mastantuono E, Theisen D, Tsunoda T, Satake W, Toda T, Nakagawa H, Tsuji Y, Tsuchiya T, Yamamoto H, Miyamoto Y, Endo N, Kimura A, Ozaki K, Motomura H, Suda K, Tanaka T, Schwartz PJ, Meitinger T, Kääb S, Guicheney P, Shimizu W, Bhuiyan ZA, Watanabe H, Chazin WJ, George AL. Circ Cardiovasc Genet 7 466-474 (2014)
  11. Structure of the lnlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Marino M, Braun L, Cossart P, Ghosh P. Mol Cell 4 1063-1072 (1999)
  12. Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. Osawa M, Swindells MB, Tanikawa J, Tanaka T, Mase T, Furuya T, Ikura M. J Mol Biol 276 165-176 (1998)
  13. Loss of conformational stability in calmodulin upon methionine oxidation. Gao J, Yin DH, Yao Y, Sun H, Qin Z, Schöneich C, Williams TD, Squier TC. Biophys J 74 1115-1134 (1998)
  14. A closed compact structure of native Ca(2+)-calmodulin. Fallon JL, Quiocho FA. Structure 11 1303-1307 (2003)
  15. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. Malmendal A, Evenäs J, Forsén S, Akke M. J Mol Biol 293 883-899 (1999)
  16. Structure of a novel extracellular Ca(2+)-binding module in BM-40. Hohenester E, Maurer P, Hohenadl C, Timpl R, Jansonius JN, Engel J. Nat Struct Biol 3 67-73 (1996)
  17. Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Jong WS, Jong WS, ten Hagen-Jongman CM, den Blaauwen T, Slotboom DJ, Tame JR, Wickström D, de Gier JW, Otto BR, Luirink J. Mol Microbiol 63 1524-1536 (2007)
  18. Structure and dynamics of calmodulin in solution. Wriggers W, Mehler E, Pitici F, Weinstein H, Schulten K. Biophys J 74 1622-1639 (1998)
  19. An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Nelson MR, Chazin WJ. Protein Sci 7 270-282 (1998)
  20. Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Houdusse A, Love ML, Dominguez R, Grabarek Z, Cohen C. Structure 5 1695-1711 (1997)
  21. Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor. Silve C, Petrel C, Leroy C, Bruel H, Mallet E, Rognan D, Ruat M. J Biol Chem 280 37917-37923 (2005)
  22. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Maximciuc AA, Putkey JA, Shamoo Y, Mackenzie KR. Structure 14 1547-1556 (2006)
  23. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence. VanScyoc WS, Sorensen BR, Rusinova E, Laws WR, Ross JB, Shea MA. Biophys J 83 2767-2780 (2002)
  24. Energetics of target peptide binding by calmodulin reveals different modes of binding. Brokx RD, Lopez MM, Vogel HJ, Makhatadze GI. J Biol Chem 276 14083-14091 (2001)
  25. The latch region of calcineurin B is involved in both immunosuppressant-immunophilin complex docking and phosphatase activation. Milan D, Griffith J, Su M, Price ER, McKeon F. Cell 79 437-447 (1994)
  26. Geometry-based sampling of conformational transitions in proteins. Seeliger D, Haas J, de Groot BL. Structure 15 1482-1492 (2007)
  27. Measurement of Ca2+-binding constants of proteins and presentation of the CaLigator software. André I, Linse S. Anal Biochem 305 195-205 (2002)
  28. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility. Orans J, Johnson MD, Coggan KA, Sperlazza JR, Heiniger RW, Wolfgang MC, Redinbo MR. Proc Natl Acad Sci U S A 107 1065-1070 (2010)
  29. Regulation of bestrophin Cl channels by calcium: role of the C terminus. Xiao Q, Prussia A, Yu K, Cui YY, Hartzell HC. J Gen Physiol 132 681-692 (2008)
  30. Targeted disruption of Ca(2+)-calmodulin signaling in Drosophila growth cones leads to stalls in axon extension and errors in axon guidance. VanBerkum MF, Goodman CS. Neuron 14 43-56 (1995)
  31. Topology of the calmodulin-melittin complex. Scaloni A, Miraglia N, Orrù S, Amodeo P, Motta A, Marino G, Pucci P. J Mol Biol 277 945-958 (1998)
  32. Effect of divalent cations on the structure of the antibiotic daptomycin. Ho SW, Jung D, Calhoun JR, Lear JD, Okon M, Scott WR, Hancock RE, Straus SK. Eur Biophys J 37 421-433 (2008)
  33. Structure of Paramecium tetraurelia calmodulin at 1.8 A resolution. Rao ST, Wu S, Satyshur KA, Ling KY, Kung C, Sundaralingam M. Protein Sci 2 436-447 (1993)
  34. Crystal structure of MO25 alpha in complex with the C terminus of the pseudo kinase STE20-related adaptor. Milburn CC, Boudeau J, Deak M, Alessi DR, van Aalten DM. Nat Struct Mol Biol 11 193-200 (2004)
  35. Dynamics of the transition between open and closed conformations in a calmodulin C-terminal domain mutant. Evenäs J, Malmendal A, Akke M. Structure 9 185-195 (2001)
  36. The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin. Abraham SJ, Nolet RP, Calvert RJ, Anderson LM, Gaponenko V. Biochemistry 48 7575-7583 (2009)
  37. Energetics of target peptide recognition by calmodulin: a calorimetric study. Wintrode PL, Privalov PL. J Mol Biol 266 1050-1062 (1997)
  38. Bending of the calmodulin central helix: a theoretical study. van der Spoel D, de Groot BL, Hayward S, Berendsen HJ, Vogel HJ. Protein Sci 5 2044-2053 (1996)
  39. Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective. Grabarek Z. J Mol Biol 346 1351-1366 (2005)
  40. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis. Drum CL, Yan SZ, Sarac R, Mabuchi Y, Beckingham K, Bohm A, Grabarek Z, Tang WJ. J Biol Chem 275 36334-36340 (2000)
  41. Dynamic hydrogels: translating a protein conformational change into macroscopic motion. Murphy WL, Dillmore WS, Modica J, Mrksich M. Angew Chem Int Ed Engl 46 3066-3069 (2007)
  42. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: more evidence for oxidative stress in vitiligo. Schallreuter KU, Gibbons NC, Zothner C, Abou Elloof MM, Wood JM. Biochem Biophys Res Commun 360 70-75 (2007)
  43. Pseudomonas aeruginosa PilY1 binds integrin in an RGD- and calcium-dependent manner. Johnson MD, Garrett CK, Bond JE, Coggan KA, Wolfgang MC, Redinbo MR. PLoS One 6 e29629 (2011)
  44. Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Vigil D, Gallagher SC, Trewhella J, García AE. Biophys J 80 2082-2092 (2001)
  45. Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium. Nemirovskiy O, Giblin DE, Gross ML. J Am Soc Mass Spectrom 10 711-718 (1999)
  46. Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin. Komeiji Y, Ueno Y, Uebayasi M. FEBS Lett 521 133-139 (2002)
  47. Evidence of noncovalent dimerization of calmodulin. Lafitte D, Heck AJ, Hill TJ, Jumel K, Harding SE, Derrick PJ. Eur J Biochem 261 337-344 (1999)
  48. Crystal structure of human myosin 1c--the motor in GLUT4 exocytosis: implications for Ca2+ regulation and 14-3-3 binding. Münnich S, Taft MH, Taft MH, Manstein DJ. J Mol Biol 426 2070-2081 (2014)
  49. Spring mechanics of alpha-helical polypeptide. Idiris A, Alam MT, Ikai A. Protein Eng 13 763-770 (2000)
  50. A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics. Likic VA, Gooley PR, Speed TP, Strehler EE. Protein Sci 14 2955-2963 (2005)
  51. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin. Mäler L, Sastry M, Chazin WJ. J Mol Biol 317 279-290 (2002)
  52. Binding of calmodulin to the HIV-1 matrix protein triggers myristate exposure. Ghanam RH, Fernandez TF, Fledderman EL, Saad JS. J Biol Chem 285 41911-41920 (2010)
  53. A molecular dynamics study of Ca(2+)-calmodulin: evidence of interdomain coupling and structural collapse on the nanosecond timescale. Shepherd CM, Vogel HJ. Biophys J 87 780-791 (2004)
  54. Calmodulin, conformational states, and calcium signaling. A single-molecule perspective. Johnson CK. Biochemistry 45 14233-14246 (2006)
  55. The complex structure of calmodulin bound to a calcineurin peptide. Ye Q, Wang H, Zheng J, Wei Q, Jia Z. Proteins 73 19-27 (2008)
  56. Structure and dynamics of calcium-activated calmodulin in solution. Yang C, Jas GS, Kuczera K. J Biomol Struct Dyn 19 247-271 (2001)
  57. Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations. Tsigelny I, Shindyalov IN, Bourne PE, Südhof TC, Taylor P. Protein Sci 9 180-185 (2000)
  58. Modulation of calmodulin plasticity by the effect of macromolecular crowding. Homouz D, Sanabria H, Waxham MN, Cheung MS. J Mol Biol 391 933-943 (2009)
  59. Quaternary structure built from subunits combining NMR and small-angle x-ray scattering data. Mattinen ML, Pääkkönen K, Ikonen T, Craven J, Drakenberg T, Serimaa R, Waltho J, Annila A. Biophys J 83 1177-1183 (2002)
  60. Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly. Ghanam RH, Samal AB, Fernandez TF, Saad JS. Front Microbiol 3 55 (2012)
  61. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1. Heidarsson PO, Naqvi MM, Otazo MR, Mossa A, Kragelund BB, Cecconi C. Proc Natl Acad Sci U S A 111 13069-13074 (2014)
  62. Fluorescence labeling, purification, and immobilization of a double cysteine mutant calmodulin fusion protein for single-molecule experiments. Allen MW, Urbauer RJ, Zaidi A, Williams TD, Urbauer JL, Johnson CK. Anal Biochem 325 273-284 (2004)
  63. Solvation energetics and conformational change in EF-hand proteins. Ababou A, Desjarlais JR. Protein Sci 10 301-312 (2001)
  64. Structure-based systematic isolation of conditional-lethal mutations in the single yeast calmodulin gene. Ohya Y, Botstein D. Genetics 138 1041-1054 (1994)
  65. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. Bigelow DJ, Squier TC. Mol Biosyst 7 2101-2109 (2011)
  66. Ca(2+)-binding proteins in the retina: from discovery to etiology of human disease(1). Sokal I, Li N, Verlinde CL, Haeseleer F, Baehr W, Palczewski K. Biochim Biophys Acta 1498 233-251 (2000)
  67. Immunosuppressive activity of a molecule isolated from Artemisia annua on DTH responses compared with cyclosporin A. Noori S, Naderi GA, Hassan ZM, Habibi Z, Bathaie SZ, Hashemi SM. Int Immunopharmacol 4 1301-1306 (2004)
  68. Molecular evolution and structure-function relationships of crotoxin-like and asparagine-6-containing phospholipases A2 in pit viper venoms. Chen YH, Wang YM, Hseu MJ, Tsai IH. Biochem J 381 25-34 (2004)
  69. Protein engineering and NMR studies of calmodulin. Vogel HJ, Zhang M. Mol Cell Biochem 149-150 3-15 (1995)
  70. Lanthanide-binding helix-turn-helix peptides: solution structure of a designed metallonuclease. Welch JT, Kearney WR, Franklin SJ. Proc Natl Acad Sci U S A 100 3725-3730 (2003)
  71. Structural features underlying the unusual mode of calmodulin phosphorylation by protein kinase CK2: A study with synthetic calmodulin fragments. Marin O, Meggio F, Pinna LA. Biochem Biophys Res Commun 256 442-446 (1999)
  72. The kinetic cycle of cardiac troponin C: calcium binding and dissociation at site II trigger slow conformational rearrangements. Hazard AL, Kohout SC, Stricker NL, Putkey JA, Falke JJ. Protein Sci 7 2451-2459 (1998)
  73. Calcium signaling in excystation of the early diverging eukaryote, Giardia lamblia. Reiner DS, Hetsko ML, Meszaros JG, Sun CH, Morrison HG, Brunton LL, Gillin FD. J Biol Chem 278 2533-2540 (2003)
  74. Probing protein mechanics: residue-level properties and their use in defining domains. Navizet I, Cailliez F, Lavery R. Biophys J 87 1426-1435 (2004)
  75. Calcium binding decreases the stokes radius of calmodulin and mutants R74A, R90A, and R90G. Sorensen BR, Shea MA. Biophys J 71 3407-3420 (1996)
  76. Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy. Palo K, Brand L, Eggeling C, Jäger S, Kask P, Gall K. Biophys J 83 605-618 (2002)
  77. Paramagnetic relaxation enhancement for the characterization of the conformational heterogeneity in two-domain proteins. Bertini I, Luchinat C, Nagulapalli M, Parigi G, Ravera E. Phys Chem Chem Phys 14 9149-9156 (2012)
  78. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study. Allouche D, Parello J, Sanejouand YH. J Mol Biol 285 857-873 (1999)
  79. Cytoplasmic calcium buffers in intact human red cells. Tiffert T, Lew VL. J Physiol 500 ( Pt 1) 139-154 (1997)
  80. Metal toxicity and opportunistic binding of Pb(2+) in proteins. Kirberger M, Wong HC, Jiang J, Yang JJ. J Inorg Biochem 125 40-49 (2013)
  81. Hierarchical clustering of the correlation patterns: new method of domain identification in proteins. Yesylevskyy SO, Kharkyanen VN, Demchenko AP. Biophys Chem 119 84-93 (2006)
  82. Parameterization of Ca+2-protein interactions for molecular dynamics simulations. Project E, Nachliel E, Gutman M. J Comput Chem 29 1163-1169 (2008)
  83. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. Butterfoss GL, DeRose EF, Gabel SA, Perera L, Krahn JM, Mueller GA, Zheng X, London RE. J Biomol NMR 48 31-47 (2010)
  84. Modification of Cys-837 identifies an actin-binding site in the beta-propeller protein scruin. Sun S, Footer M, Matsudaira P. Mol Biol Cell 8 421-430 (1997)
  85. NMR chemical shifts and structure refinement in proteins. Laws DD, de Dios AC, Oldfield E. J Biomol NMR 3 607-612 (1993)
  86. Polydispersity as a parameter for indicating the thermal stability of proteins by dynamic light scattering. Shiba K, Niidome T, Katoh E, Xiang H, Han L, Mori T, Katayama Y. Anal Sci 26 659-663 (2010)
  87. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently. Guo Q, Jureller JE, Warren JT, Solomaha E, Florián J, Tang WJ. J Biol Chem 283 23836-23845 (2008)
  88. The structure of a calmodulin mutant with a deletion in the central helix: implications for molecular recognition and protein binding. Tabernero L, Taylor DA, Chandross RJ, VanBerkum MF, Means AR, Quiocho FA, Sack JS. Structure 5 613-622 (1997)
  89. An EF-hand phage display study of calmodulin subdomain pairing. Linse S, Voorhies M, Norström E, Schultz DA. J Mol Biol 296 473-486 (2000)
  90. Impact of methionine oxidation on calmodulin structural dynamics. McCarthy MR, Thompson AR, Nitu F, Moen RJ, Olenek MJ, Klein JC, Thomas DD. Biochem Biophys Res Commun 456 567-572 (2015)
  91. Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins. Lundström P, Akke M. J Biomol NMR 32 163-173 (2005)
  92. PROXIMO--a new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS). Gerega SK, Downard KM. Bioinformatics 22 1702-1709 (2006)
  93. Structure, dynamics and thermodynamics of the human centrin 2/hSfi1 complex. Martinez-Sanz J, Kateb F, Assairi L, Blouquit Y, Bodenhausen G, Abergel D, Mouawad L, Craescu CT. J Mol Biol 395 191-204 (2010)
  94. Unexpected structure of the Ca2+-regulatory region from soybean calcium-dependent protein kinase-alpha. Weljie AM, Vogel HJ. J Biol Chem 279 35494-35502 (2004)
  95. Using metadynamics to understand the mechanism of calmodulin/target recognition at atomic detail. Fiorin G, Pastore A, Carloni P, Parrinello M. Biophys J 91 2768-2777 (2006)
  96. Calcium-dependent stabilization of the central sequence between Met(76) and Ser(81) in vertebrate calmodulin. Qin Z, Squier TC. Biophys J 81 2908-2918 (2001)
  97. Determination of the individual roles of the linker residues in the interdomain motions of calmodulin using NMR chemical shifts. Kukic P, Camilloni C, Cavalli A, Vendruscolo M. J Mol Biol 426 1826-1838 (2014)
  98. Identification of a novel binding site for calmodulin in ammodytoxin A, a neurotoxic group IIA phospholipase A2. Prijatelj P, Sribar J, Ivanovski G, Krizaj I, Gubensek F, Pungercar J. Eur J Biochem 270 3018-3025 (2003)
  99. Molecular tuning of an EF-hand-like calcium binding loop. Contributions of the coordinating side chain at loop position 3. Drake SK, Zimmer MA, Kundrot C, Falke JJ. J Gen Physiol 110 173-184 (1997)
  100. NMR, biophysical, and biochemical studies reveal the minimal Calmodulin binding domain of the HIV-1 matrix protein. Samal AB, Ghanam RH, Fernandez TF, Monroe EB, Saad JS. J Biol Chem 286 33533-33543 (2011)
  101. Solution structure of the Eps15 homology domain of a human POB1 (partner of RalBP1). Koshiba S, Kigawa T, Iwahara J, Kikuchi A, Yokoyama S. FEBS Lett 442 138-142 (1999)
  102. Allosteric actuation of inverse phase transition of a stimulus-responsive fusion polypeptide by ligand binding. Kim B, Chilkoti A. J Am Chem Soc 130 17867-17873 (2008)
  103. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis. Laine E, Yoneda JD, Blondel A, Malliavin TE. Proteins 71 1813-1829 (2008)
  104. Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation. Lundström P, Akke M. Chembiochem 6 1685-1692 (2005)
  105. New non-lethal calmodulin mutations in Paramecium. A structural and functional bipartition hypothesis. Ling KY, Maley ME, Preston RR, Saimi Y, Kung C. Eur J Biochem 222 433-439 (1994)
  106. Structures of the platelet calcium- and integrin-binding protein and the alphaIIb-integrin cytoplasmic domain suggest a mechanism for calcium-regulated recognition; homology modelling and NMR studies. Hwang PM, Vogel HJ. J Mol Recognit 13 83-92 (2000)
  107. Unwinding the helical linker of calcium-loaded calmodulin: a molecular dynamics study. Fiorin G, Biekofsky RR, Pastore A, Carloni P. Proteins 61 829-839 (2005)
  108. Letter X-ray analysis reveals conformational adaptation of the linker in functional calmodulin mutants. Meador WE, George SE, Means AR, Quiocho FA. Nat Struct Biol 2 943-945 (1995)
  109. X-ray structures of the microglia/macrophage-specific protein Iba1 from human and mouse demonstrate novel molecular conformation change induced by calcium binding. Yamada M, Ohsawa K, Imai Y, Kohsaka S, Kamitori S. J Mol Biol 364 449-457 (2006)
  110. Characterisation of two calmodulin-like proteins from the liver fluke, Fasciola hepatica. Russell SL, McFerran NV, Hoey EM, Trudgett A, Timson DJ. Biol Chem 388 593-599 (2007)
  111. Fragment complementation of calbindin D28k. Berggård T, Thulin E, Akerfeldt KS, Linse S. Protein Sci 9 2094-2108 (2000)
  112. Structural insights into Ca2+-calmodulin regulation of Plectin 1a-integrin β4 interaction in hemidesmosomes. Song JG, Kostan J, Drepper F, Knapp B, de Almeida Ribeiro E, Konarev PV, Grishkovskaya I, Wiche G, Gregor M, Svergun DI, Warscheid B, Djinović-Carugo K. Structure 23 558-570 (2015)
  113. A Single Approach Reveals the Composite Conformational Changes, Order of Binding, and Affinities for Calcium Binding to Calmodulin. Liu XR, Zhang MM, Rempel DL, Gross ML. Anal Chem 91 5508-5512 (2019)
  114. Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean. Weljie AM, Clarke TE, Juffer AH, Harmon AC, Vogel HJ. Proteins 39 343-357 (2000)
  115. The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin. Meyer DF, Mabuchi Y, Grabarek Z. J Biol Chem 271 11284-11290 (1996)
  116. Backbone dynamic properties of the central linker region of calcium-calmodulin in 35% trifluoroethanol. Brokx RD, Scheek RM, Weljie AM, Vogel HJ. J Struct Biol 146 272-280 (2004)
  117. Calmodulin binding of a peptide derived from the regulatory domain of Bordetella pertussis adenylate cyclase. Craescu CT, Bouhss A, Mispelter J, Diesis E, Popescu A, Chiriac M, Bârzu O. J Biol Chem 270 7088-7096 (1995)
  118. Charge density-dependent modifications of hydration shell waters by Hofmeister ions. Guo F, Friedman JM. J Am Chem Soc 131 11010-11018 (2009)
  119. Comparative modeling of the three-dimensional structure of the calmodulin-related TCH2 protein from Arabidopsis. Khan AR, Johnson KA, Braam J, James MN. Proteins 27 144-153 (1997)
  120. Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin. Settimo L, Donnini S, Juffer AH, Woody RW, Marin O. Biopolymers 88 373-385 (2007)
  121. Site-specific modification of calmodulin Ca²(+) affinity tunes the skeletal muscle ryanodine receptor activation profile. Jiang J, Zhou Y, Zou J, Chen Y, Patel P, Yang JJ, Balog EM. Biochem J 432 89-99 (2010)
  122. Structural and functional characterization of human Iba proteins. Schulze JO, Quedenau C, Roske Y, Adam T, Schüler H, Behlke J, Turnbull AP, Sievert V, Scheich C, Mueller U, Heinemann U, Büssow K. FEBS J 275 4627-4640 (2008)
  123. The change of protein intradomain mobility on ligand binding: is it a commonly observed phenomenon? Yesylevskyy SO, Kharkyanen VN, Demchenko AP. Biophys J 91 3002-3013 (2006)
  124. A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2. Larsson G, Schleucher J, Onions J, Hermann S, Grundström T, Wijmenga SS. Protein Sci 10 169-186 (2001)
  125. An alternative assay to discover potential calmodulin inhibitors using a human fluorophore-labeled CaM protein. González-Andrade M, Figueroa M, Rodríguez-Sotres R, Mata R, Sosa-Peinado A. Anal Biochem 387 64-70 (2009)
  126. Crystal structure of human calmodulin-like protein: insights into its functional role. Han BG, Han M, Sui H, Yaswen P, Walian PJ, Jap BK. FEBS Lett 521 24-30 (2002)
  127. Multisite ion model in concentrated solutions of divalent cations (MgCl2 and CaCl2): osmotic pressure calculations. Saxena A, García AE. J Phys Chem B 119 219-227 (2015)
  128. An engineered calmodulin-based allosteric switch for Peptide biosensing. Meister GE, Joshi NS. Chembiochem 14 1460-1467 (2013)
  129. Binding to the high-affinity M-type receptor for secreted phospholipases A(2) is not obligatory for the presynaptic neurotoxicity of ammodytoxin A. Prijatelj P, Vardjan N, Rowan EG, Krizaj I, Pungercar J. Biochimie 88 1425-1433 (2006)
  130. Molecular dynamics simulations of calcium-free calmodulin in solution. Yang C, Kuczera K. J Biomol Struct Dyn 19 801-819 (2002)
  131. Neurogranin stimulates Ca2+/calmodulin-dependent kinase II by suppressing calcineurin activity at specific calcium spike frequencies. Li L, Lai M, Cole S, Le Novère N, Edelstein SJ. PLoS Comput Biol 16 e1006991 (2020)
  132. Probing conformational and functional substates of calmodulin by high pressure FTIR spectroscopy: influence of Ca2+ binding and the hypervariable region of K-Ras4B. Erwin N, Patra S, Winter R. Phys Chem Chem Phys 18 30020-30028 (2016)
  133. Relative affinity constants by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry: calmodulin binding to peptide analogs of myosin light chain kinase. Nousiainen M, Derrick PJ, Lafitte D, Vainiotalo P. Biophys J 85 491-500 (2003)
  134. Characterization of unique signature sequences in the divergent maternal protein Bcl2l10. Guillemin Y, Cornut-Thibaut A, Gillet G, Penin F, Aouacheria A. Mol Biol Evol 28 3271-3283 (2011)
  135. Disruption of a calmodulin central helix-like region of 10-formyltetrahydrofolate dehydrogenase impairs its dehydrogenase activity by uncoupling the functional domains. Reuland SN, Vlasov AP, Krupenko SA. J Biol Chem 278 22894-22900 (2003)
  136. Ligand-induced dimer formation of calmodulin. Zhang Y, Tan H, Jia Z, Chen G. J Mol Recognit 21 267-274 (2008)
  137. Structural requirements for N-trimethylation of lysine 115 of calmodulin. Cobb JA, Roberts DM. J Biol Chem 275 18969-18975 (2000)
  138. The arrhythmogenic N53I variant subtly changes the structure and dynamics in the calmodulin N-terminal domain, altering its interaction with the cardiac ryanodine receptor. Holt C, Hamborg L, Lau K, Brohus M, Sørensen AB, Larsen KT, Sommer C, Van Petegem F, Overgaard MT, Wimmer R. J Biol Chem 295 7620-7634 (2020)
  139. Biophysical characterization of calmodulin and calmodulin-like proteins from rice, Oryza sativa L. Chinpongpanich A, Wutipraditkul N, Thairat S, Buaboocha T. Acta Biochim Biophys Sin (Shanghai) 43 867-876 (2011)
  140. Comparative estimation of vibrational entropy changes in proteins through normal modes analysis. Carrington BJ, Mancera RL. J Mol Graph Model 23 167-174 (2004)
  141. Complexes of Ni(ii) and Cu(ii) with small peptides: deciding whether to deprotonate. Dunbar RC, Martens J, Berden G, Oomens J. Phys Chem Chem Phys 18 26923-26932 (2016)
  142. Composite Conformational Changes of Signaling Proteins upon Ligand Binding Revealed by a Single Approach: Calcium-Calmodulin Study. Liu XR, Rempel DL, Gross ML. Anal Chem 91 12560-12567 (2019)
  143. Electrostatic control of the overall shape of calmodulin: numerical calculations. Isvoran A, Craescu CT, Alexov E. Eur Biophys J 36 225-237 (2007)
  144. Fluorescence, circular dichroism, NMR, and docking studies of the interaction of the alkaloid malbrancheamide with calmodulin. Figueroa M, González-Andrade M, Sosa-Peinado A, Madariaga-Mazón A, Del Río-Portilla F, González Mdel C, Mata R. J Enzyme Inhib Med Chem 26 378-385 (2011)
  145. Internal coordinate molecular dynamics: a foundation for multiscale dynamics. Vaidehi N, Jain A. J Phys Chem B 119 1233-1242 (2015)
  146. Membranous adenylyl cyclase 1 activation is regulated by oxidation of N- and C-terminal methionine residues in calmodulin. Lübker C, Urbauer RJ, Moskovitz J, Dove S, Weisemann J, Fedorova M, Urbauer JL, Seifert R. Biochem Pharmacol 93 196-209 (2015)
  147. Molecular dynamics study on folding and allostery in RfaH. Xiong L, Liu Z. Proteins 83 1582-1592 (2015)
  148. Multiple calcium binding sites make calmodulin multifunctional. Valeyev NV, Heslop-Harrison P, Postlethwaite I, Kotov NV, Bates DG. Mol Biosyst 4 66-73 (2008)
  149. The formation of a complex between calmodulin and neuronal nitric oxide synthase is determined by ESI-MS. Shirran S, Garnaud P, Daff S, McMillan D, Barran P. J R Soc Interface 2 465-476 (2005)
  150. Using side-chain aromatic proton chemical shifts for a quantitative analysis of protein structures. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M. Angew Chem Int Ed Engl 50 9620-9623 (2011)
  151. A cryptophane-based "turn-on" 129Xe NMR biosensor for monitoring calmodulin. Riggle BA, Greenberg ML, Wang Y, Wissner RF, Zemerov SD, Petersson EJ, Dmochowski IJ. Org Biomol Chem 15 8883-8887 (2017)
  152. Building blocks, hinge-bending motions and protein topology. Sinha N, Tsa CJ, Nussinov R. J Biomol Struct Dyn 19 369-380 (2001)
  153. Ca2+ binding sites in calmodulin and troponin C alter interhelical angle movements. Goto K, Toyama A, Takeuchi H, Takayama K, Saito T, Iwamoto M, Yeh JZ, Narahashi T. FEBS Lett 561 51-57 (2004)
  154. Calmodulin methionine residues are targets for one-electron oxidation by hydroxyl radicals: formation of S[therefore]N three-electron bonded radical complexes. Nauser T, Jacoby M, Koppenol WH, Squier TC, Schöneich C. Chem Commun (Camb) 587-589 (2005)
  155. Comparison of negative and positive ion electrospray ionization mass spectra of calmodulin and its complex with trifluoperazine. Watt SJ, Oakley A, Sheil MM, Beck JL. Rapid Commun Mass Spectrom 19 2123-2130 (2005)
  156. Construction of an epitope-tagged calmodulin useful for the analysis of calmodulin-binding proteins: addition of a hemagglutinin epitope does not affect calmodulin-dependent activation of smooth muscle myosin light chain kinase. Szymanska G, O'Connor MB, O'Connor CM. Anal Biochem 252 96-105 (1997)
  157. Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal inter-domain electrostatic repulsion. Hellstrand E, Kukora S, Shuman CF, Steenbergen S, Thulin E, Kohli A, Krouse B, Linse S, Åkerfeldt KS. FEBS J 280 2675-2687 (2013)
  158. Is an electronic shield at the molecular origin of lead poisoning? A computational modeling experiment. Gourlaouen C, Parisel O. Angew Chem Int Ed Engl 46 553-556 (2007)
  159. Molecular dynamics simulations of a calmodulin-peptide complex in solution. Yang C, Kuczera K. J Biomol Struct Dyn 20 179-197 (2002)
  160. Size-dependent impact of CNTs on dynamic properties of calmodulin. Gao J, Wang L, Kang SG, Zhao L, Ji M, Chen C, Zhao Y, Zhou R, Li J. Nanoscale 6 12828-12837 (2014)
  161. Solvent-induced differentiation of protein backbone hydrogen bonds in calmodulin. Juranić N, Atanasova E, Streiff JH, Macura S, Prendergast FG. Protein Sci 16 1329-1337 (2007)
  162. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions. Kovacs E, Harmat V, Tóth J, Vértessy BG, Módos K, Kardos J, Liliom K. FASEB J 24 3829-3839 (2010)
  163. Structure of Ca2+-binding protein-6 from Entamoeba histolytica and its involvement in trophozoite proliferation regulation. Verma D, Murmu A, Gourinath S, Bhattacharya A, Chary KVR. PLoS Pathog 13 e1006332 (2017)
  164. Understanding the EF-hand closing pathway using non-biased interatomic potentials. Dupuis L, Mousseau N. J Chem Phys 136 035101 (2012)
  165. Assessing protein conformational landscapes: integration of DEER data in Maximum Occurrence analysis. Gigli L, Andrałojć W, Dalaloyan A, Parigi G, Ravera E, Goldfarb D, Luchinat C. Phys Chem Chem Phys 20 27429-27438 (2018)
  166. Enhanced conformational sampling technique provides an energy landscape view of large-scale protein conformational transitions. Shao Q. Phys Chem Chem Phys 18 29170-29182 (2016)
  167. Hydrolytically active Eu(III) and Ce(IV) EF-hand peptides. Sirish M, Franklin SJ. J Inorg Biochem 91 253-258 (2002)
  168. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data. González-Andrade M, Rodríguez-Sotres R, Madariaga-Mazón A, Rivera-Chávez J, Mata R, Sosa-Peinado A, Del Pozo-Yauner L, Arias-Olguín II. J Biomol Struct Dyn 34 78-91 (2016)
  169. Multiplexed sorting of libraries on libraries: a novel method for empirical protein design by affinity-driven phage enrichment on synthetic peptide arrays. Hultschig C, Frank R. Mol Divers 8 231-245 (2004)
  170. Prediction of three dimensional structure of calmodulin. Chen K, Ruan J, Kurgan LA. Protein J 25 57-70 (2006)
  171. Structural genomics of caenorhabditis elegans: crystal structure of calmodulin. Symersky J, Lin G, Li S, Qiu S, Carson M, Schormann N, Luo M. Proteins 53 947-949 (2003)
  172. Coarse-grained molecular simulations of allosteric cooperativity. Nandigrami P, Portman JJ. J Chem Phys 144 105101 (2016)
  173. Docking of calcium ions in proteins with flexible side chains and deformable backbones. Cheng RC, Zhorov BS. Eur Biophys J 39 825-838 (2010)
  174. Expression and characterization of EF-hand I loop mutants of aequorin replaced with other loop sequences of Ca2+-binding proteins: an approach to studying the EF-hand motif of proteins. Inouye S, Sahara-Miura Y. J Biochem 160 59-68 (2016)
  175. Influence of Subcellular Localization and Functional State on Protein Turnover. Yousefi R, Jevdokimenko K, Kluever V, Pacheu-Grau D, Fornasiero EF. Cells 10 1747 (2021)
  176. MESMER: minimal ensemble solutions to multiple experimental restraints. Ihms EC, Foster MP. Bioinformatics 31 1951-1958 (2015)
  177. NMR-guided directed evolution. Bhattacharya S, Margheritis EG, Takahashi K, Kulesha A, D'Souza A, Kim I, Yoon JH, Tame JRH, Volkov AN, Makhlynets OV, Korendovych IV. Nature 610 389-393 (2022)
  178. Probing the polarity and water environment at the protein-peptide binding interface using tryptophan analogues. Chen YT, Chao WC, Kuo HT, Shen JY, Chen IH, Yang HC, Wang JS, Lu JF, Cheng RP, Chou PT. Biochem Biophys Rep 7 113-118 (2016)
  179. Structural characterization by nuclear magnetic resonance spectroscopy of a genetically engineered high-affinity calmodulin-binding peptide derived from Bordetella pertussis adenylate cyclase. Munier H, Bouhss A, Gilles AM, Palibroda N, Bârzu O, Mispelter J, Craescu CT. Arch Biochem Biophys 320 224-235 (1995)
  180. Calcium-binding proteins afford calibration of dihedral-angle dependence of 3J(NC(gamma)) coupling constant in aspartate and asparagine residues. Juranić N, Atanasova E, Moncrieffe MC, Prendergast FG, Macura S. J Magn Reson 175 222-225 (2005)
  181. Calcium-dependent conformational transition of calmodulin determined by Fourier transform infrared spectroscopy. Yu T, Wu G, Yang H, Wang J, Yu S. Int J Biol Macromol 56 57-61 (2013)
  182. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations. Nandigrami P, Portman JJ. J Chem Phys 144 105102 (2016)
  183. Determination of helix orientations in proteins. Tatulian SA. Comput Biol Chem 32 370-374 (2008)
  184. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin. Jas GS, Kuczera K. Proteins 48 257-268 (2002)
  185. Monitoring conformational changes in protein complexes using chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: the effect of calcium binding on the calmodulin-melittin complex. Novak P, Havlicek V, Derrick PJ, Beran KA, Bashir S, Giannakopulos AE. Eur J Mass Spectrom (Chichester) 13 281-290 (2007)
  186. Phosphorylation-dependent protein design: design of a minimal protein kinase-inducible domain. Gao F, Thornley BS, Tressler CM, Naduthambi D, Zondlo NJ. Org Biomol Chem 17 3984-3995 (2019)
  187. Single-Molecule FRET States, Conformational Interchange, and Conformational Selection by Dye Labels in Calmodulin. DeVore MS, Braimah A, Benson DR, Johnson CK. J Phys Chem B 120 4357-4364 (2016)
  188. Solution structure and internal dynamics of NSCP, a compact calcium-binding protein. Rabah G, Popescu R, Cox JA, Engelborghs Y, Craescu CT. FEBS J 272 2022-2036 (2005)
  189. Structural dependencies of protein backbone 2JNC' couplings. Juranić N, Dannenberg JJ, Cornilescu G, Salvador P, Atanasova E, Ahn HC, Macura S, Markley JL, Prendergast FG. Protein Sci 17 768-776 (2008)
  190. Structural elements within the methylation loop (residues 112-117) and EF hands III and IV of calmodulin are required for Lys(115) trimethylation. Cobb JA, Han CH, Wills DM, Roberts DM. Biochem J 340 ( Pt 2) 417-424 (1999)
  191. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering. Cinar S, Al-Ayoubi S, Sternemann C, Peters J, Winter R, Czeslik C. Phys Chem Chem Phys 20 3514-3522 (2018)
  192. Allostery in Orai1 binding to calmodulin revealed from conformational thermodynamics. Maganti L, Dutta S, Ghosh M, Chakrabarti J. J Biomol Struct Dyn 37 493-502 (2019)
  193. Altered methylation substrate kinetics and calcium binding of a calmodulin with a Val136-->Thr substitution. Han CH, Roberts DM. Eur J Biochem 244 904-912 (1997)
  194. Binding studies of nNOS-active amphibian peptides and Ca2+ calmodulin, using negative ion electrospray ionisation mass spectrometry. Pukala TL, Urathamakul T, Watt SJ, Beck JL, Jackway RJ, Bowie JH. Rapid Commun Mass Spectrom 22 3501-3509 (2008)
  195. Characterization and identification of calmodulin and calmodulin binding proteins in hemocyte of the black tiger shrimp (Penaeus monodon). Sengprasert P, Amparyup P, Tassanakajorn A, Wongpanya R. Dev Comp Immunol 50 87-97 (2015)
  196. Combining fragment homology modeling with molecular dynamics aims at prediction of Ca²⁺ binding sites in CaBPs. Pang C, Cao T, Li J, Jia M, Zhang S, Ren S, An H, Zhan Y. J Comput Aided Mol Des 27 697-705 (2013)
  197. Comparison of ligand binding and conformational stability of human calmodulin with its homolog from the malaria parasite Plasmodium falciparum. Juhász T, Kardos J, Dürvanger Z, Harmat V, Liliom K. FASEB Bioadv 2 489-505 (2020)
  198. Confinement Alters the Structure and Function of Calmodulin. Xu G, Cheng K, Wu Q, Liu M, Li C. Angew Chem Int Ed Engl 56 530-534 (2017)
  199. Engineering strontium binding affinity in an EF-hand motif: a quantum chemical and molecular dynamics study. Rinaldo D, Vita C, Field MJ. J Biomol Struct Dyn 22 281-297 (2004)
  200. Exploring the natural conformational changes of the C-terminal domain of calmodulin. Elezgaray J, Marcou G, Sanejouand YH. Phys Rev E Stat Nonlin Soft Matter Phys 66 031908 (2002)
  201. Impact of graphyne on structural and dynamical properties of calmodulin. Feng M, Bell DR, Luo J, Zhou R. Phys Chem Chem Phys 19 10187-10195 (2017)
  202. Lanthanide-dependent coordination interactions in lanmodulin: a 2D IR and molecular dynamics simulations study. Liu S, Featherston ER, Cotruvo JA, Baiz CR. Phys Chem Chem Phys 23 21690-21700 (2021)
  203. Modeling the mutational effects on calmodulin structure: prediction of alteration in the amino acid interactions. Rashid A, Khurshid R, Begum M, Gul-e-Raana, Latif M, Salim A. Biochem Biophys Res Commun 317 363-369 (2004)
  204. Molecular Properties of Bare and Microhydrated Vitamin B5-Calcium Complexes. Corinti D, Chiavarino B, Scuderi D, Fraschetti C, Filippi A, Fornarini S, Crestoni ME. Int J Mol Sci 22 E692 (2021)
  205. Mutation of Lys-75 affects calmodulin conformation. Medvedeva MV, Polyakova OV, Watterson DM, Gusev NB. FEBS Lett 450 139-143 (1999)
  206. Residue-residue interactions regulating the Ca2+-induced EF-hand conformation changes in calmodulin. Shimoyama H, Takeda-Shitaka M. J Biochem 162 259-270 (2017)
  207. Sequential assignment of 1H, 15N, 13C resonances and secondary structure of human calmodulin-like protein determined by NMR spectroscopy. Qian H, Rogers MS, Schleucher J, Edlund U, Strehler EE, Sethson I. Protein Sci 7 2421-2430 (1998)
  208. Binding by calmodulin is coupled to transient unfolding of the third FF domain of Prp40A. Díaz Casas A, Cordoba JJ, Ferrer BJ, Balakrishnan S, Wurm JE, Pastrana-Ríos B, Chazin WJ. Protein Sci 32 e4606 (2023)
  209. Conformation-specific detection of calmodulin binding using the unnatural amino acid p-azido-phenylalanine (AzF) as an IR-sensor. Creon A, Josts I, Niebling S, Huse N, Tidow H. Struct Dyn 5 064701 (2018)
  210. Conformational flexibility and the mechanisms of allosteric transitions in topologically similar proteins. Tripathi S, Portman JJ. J Chem Phys 135 075104 (2011)
  211. Crystallization and preliminary diffraction analysis of Ca(2+)-calmodulin-drug and apocalmodulin-drug complexes. Vertessy BG, Böcskei Z, Harmath V, Náray-Szabó G, Ovádi J. Proteins 28 131-134 (1997)
  212. Dissecting cooperative communications in a protein with a high-throughput single-molecule scalpel. Yu Z, Cui Y, Selvam S, Ghimire C, Mao H. Chemphyschem 16 223-232 (2015)
  213. Electron paramagnetic resonance spectroscopy of nitroxide-labeled calmodulin. Bowman PB, Puett D. Protein J 33 267-277 (2014)
  214. Importance of explicit smeared lone-pairs in anisotropic polarizable molecular mechanics. Torture track angular tests for exchange-repulsion and charge transfer contributions. El Khoury L, Naseem-Khan S, Kwapien K, Hobaika Z, Maroun RG, Piquemal JP, Gresh N. J Comput Chem 38 1897-1920 (2017)
  215. Importance of the interaction protein-protein of the CaM-PDE1A and CaM-MLCK complexes in the development of new anti-CaM drugs. González-Andrade M, Mata R, Madariaga-Mazón A, Rodríguez-Sotres R, Del Pozo-Yauner L, Sosa-Peinado A. J Mol Recognit 26 165-174 (2013)
  216. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation. Yu Y, Wang J, Shao Q, Shi J, Zhu W. J Chem Phys 142 125105 (2015)
  217. Loss of S100A1 expression leads to Ca2+ release potentiation in mutant mice with disrupted CaM and S100A1 binding to CaMBD2 of RyR1. Hernández-Ochoa EO, Melville Z, Vanegas C, Varney KM, Wilder PT, Melzer W, Weber DJ, Schneider MF. Physiol Rep 6 e13822 (2018)
  218. MD simulations of anthrax edema factor: calmodulin complexes with mutations in the edema factor "switch a" region and docking of 3'-deoxy ATP into the adenylyl cyclase active site of wild-type and mutant edema factor variants. Zhao J, Roy SA, Nelson DJ. J Biomol Struct Dyn 21 159-170 (2003)
  219. Peptide and metal ion-dependent association of isolated helix-loop-helix calcium binding domains: studies of thrombic fragments of calmodulin. Brokx RD, Vogel HJ. Protein Sci 9 964-975 (2000)
  220. Structural characterization of the catalytic γ and regulatory β subunits of phosphorylase kinase in the context of the hexadecameric enzyme complex. Rimmer MA, Nadeau OW, Artigues A, Carlson GM. Protein Sci 27 485-497 (2018)
  221. The N-terminal domain of MDM2 resembles calmodulin and its relatives. Milner-White EJ. J Mol Biol 292 957-963 (1999)
  222. Visualizing Heterogeneous Protein Conformations with Multi-Tilt Nanoparticle-Aided Cryo-Electron Microscopy Sampling. Kim C, Kim Y, Lee SJ, Yun SR, Choi J, Kim SO, Yang Y, Ihee H. Nano Lett 23 3334-3343 (2023)
  223. A Designed Enzyme Promotes Selective Post-translational Acylation. Gosavi PM, Jayachandran M, Rempillo JJL, Zozulia O, Makhlynets OV, Korendovych IV. Chembiochem 19 1605-1608 (2018)
  224. A structural comparison of 'real' and 'model' calmodulin clarified allosteric interactions regulating domain motion. Shimoyama H. J Biomol Struct Dyn 37 1567-1581 (2019)
  225. ADP enhances the allosteric activation of eukaryotic elongation factor 2 kinase by calmodulin. Piserchio A, Long KJ, Browning LS, Bohanon AL, Isiorho EA, Dalby KN, Ghose R. Proc Natl Acad Sci U S A 120 e2300902120 (2023)
  226. Binding and backbone dynamics of protein under topological constraint: calmodulin as a model system. Katyal P, Yang Y, Fu YJ, Iandosca J, Vinogradova O, Lin Y. Chem Commun (Camb) 54 8917-8920 (2018)
  227. Ca2+/calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain. Baik JY, Park EYJ, So I. Korean J Physiol Pharmacol 24 277-286 (2020)
  228. Case report of a child with long QT syndrome type 14 caused by CALM1 gene mutation and literature review. Sun Q, Xie Z, Wang F, Guo J, Yan X. Mol Genet Genomic Med e2287 (2023)
  229. Improved validation of IDP ensembles by one-bond Cα-Hα scalar couplings. Gapsys V, Narayanan RL, Xiang S, de Groot BL, Zweckstetter M. J Biomol NMR 63 299-307 (2015)
  230. Kinetic regulation of multi-ligand binding proteins. Salakhieva DV, Sadreev II, Chen MZ, Umezawa Y, Evstifeev AI, Welsh GI, Kotov NV. BMC Syst Biol 10 32 (2016)
  231. Molecular dynamics studies on conformational thermodynamics of Orai1-calmodulin complex. Maganti L, Ghosh M, Chakrabarti J. J Biomol Struct Dyn 36 3411-3419 (2018)
  232. Protein Dimerization via Tyr Residues: Highlight of a Slow Process with Co-Existence of Numerous Intermediates and Final Products. Gatin A, Duchambon P, Rest GV, Billault I, Sicard-Roselli C. Int J Mol Sci 23 1174 (2022)
  233. Structural and thermodynamic studies of two centrin isoforms from Blastocladiella emersonii upon calcium binding. Camargo AI, Wiggers HJ, Damalio JC, Araujo AP, Ribichich KF, de Camargo PC. Biochim Biophys Acta 1834 2823-2831 (2013)
  234. Acetylation stabilises calmodulin-regulated calcium signalling. Baker K, Geeves MA, Mulvihill DP. FEBS Lett 596 762-771 (2022)
  235. Consequences of Hydrophobic Nanotube Binding on the Functional Dynamics of Signaling Protein Calmodulin. Zhu W, Kong J, Zhang J, Wang J, Li W, Wang W. ACS Omega 4 10494-10501 (2019)
  236. Coordination structures of Mg2+ and Ca2+ in three types of tobacco calmodulins in solution: Fourier-transform infrared spectroscopic studies of side-chain COO- groups. Suzuki N, Imai LF, Kato Y, Nagata K, Ohashi Y, Kuchitsu K, Tanokura M, Sakamoto A, Nara M, Nakano M, Yonezawa N. Biopolymers 99 472-483 (2013)
  237. Development of new hCaM-Alexa Fluor® biosensors for a wide range of ligands. Velázquez-López I, León-Cruz E, Pardo JP, Sosa-Peinado A, González-Andrade M. Anal Biochem 516 13-22 (2017)
  238. Directly observed hydrogen bonds at calcium-binding-sites of calmodulin in solution relate to affinity of the calcium-binding. Juranić N, Atanasova E, Macura S, Prendergast FG. J Inorg Biochem 103 1415-1418 (2009)
  239. High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin. Milanesi L, Trevitt CR, Whitehead B, Hounslow AM, Tomas S, Hosszu LLP, Hunter CA, Waltho JP. Magn Reson (Gott) 2 629-642 (2021)
  240. Quantitative elemental imaging in eukaryotic algae. Schmollinger S, Chen S, Merchant SS. Metallomics 15 mfad025 (2023)
  241. The calcium-modulated structures of calmodulin and S100b proteins are useful to monitor hydrogen/deuterium exchange efficiency using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Pingerelli PL, Ozols VV, Saleem H, Anderson CR, Burns RS. Eur J Mass Spectrom (Chichester) 15 739-746 (2009)


Related citations provided by authors (2)

  1. Target Enzyme Recognition by Calmodulin: 2.4 Angstroms Structure of a Calmodulin-Peptide Complex. Meador WE, Means AR, Quiocho FA Science 257 1251- (1992)
  2. Structure of Calmodulin Refined at 2.2 Angstroms Resolution. Babu YS, Bugg CE, Cook WJ J. Mol. Biol. 204 191- (1988)