1cdk Citations

Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24).

EMBO J 12 849-59 (1993)

Abstract

The crystal structure of the porcine heart catalytic subunit of cAMP-dependent protein kinase in a ternary complex with the MgATP analogue MnAMP-PNP and a pseudosubstrate inhibitor peptide, PKI(5-24), has been solved at 2.0 A resolution from monoclinic crystals of the catalytic subunit isoform CA. The refinement is presently at an R factor of 0.194 and the active site of the molecule is well defined. The glycine-rich phosphate anchor of the nucleotide binding fold motif of the protein kinase is a beta ribbon acting as a flap with conformational flexibility over the triphosphate group. The glycines seem to be conserved to avoid steric clash with ATP. The known synergistic effects of substrate binding can be explained by hydrogen bonds present only in the ternary complex. Implications for the kinetic scheme of binding order are discussed. The structure is assumed to represent a phosphotransfer competent conformation. The invariant conserved residue Asp166 is proposed to be the catalytic base and Lys168 to stabilize the transition state. In some tyrosine kinases Lys168 is functionally replaced by an Arg displaced by two residues in the primary sequence, suggesting invariance in three-dimensional space. The structure supports an in-line transfer with a pentacoordinate transition state at the phosphorus with very few nuclear movements.

Reviews - 1cdk mentioned but not cited (3)

  1. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem. Rev. 107 5065-5081 (2007)
  2. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases. Chan TO, Pascal JM, Armen RS, Rodeck U. Cell Cycle 11 475-478 (2012)
  3. Chapter 4. Predicting and characterizing protein functions through matching geometric and evolutionary patterns of binding surfaces. Liang J, Tseng YY, Dundas J, Binkowski TA, Joachimiak A, Ouyang Z, Adamian L. Adv Protein Chem Struct Biol 75 107-141 (2008)

Articles - 1cdk mentioned but not cited (32)

  1. The importance of intrinsic disorder for protein phosphorylation. Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. Nucleic Acids Res. 32 1037-1049 (2004)
  2. Requirement for the kinase activity of human DNA-dependent protein kinase catalytic subunit in DNA strand break rejoining. Kurimasa A, Kumano S, Boubnov NV, Story MD, Tung CS, Peterson SR, Chen DJ. Mol. Cell. Biol. 19 3877-3884 (1999)
  3. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR. EMBO J. 19 979-988 (2000)
  4. Structural evolution of the protein kinase-like superfamily. Scheeff ED, Bourne PE. PLoS Comput. Biol. 1 e49 (2005)
  5. Protein deamidation. Robinson NE. Proc. Natl. Acad. Sci. U.S.A. 99 5283-5288 (2002)
  6. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G. Structure 17 128-138 (2009)
  7. Prediction of protein deamidation rates from primary and three-dimensional structure. Robinson NE, Robinson AB. Proc. Natl. Acad. Sci. U.S.A. 98 4367-4372 (2001)
  8. Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. Oliver AW, Paul A, Boxall KJ, Barrie SE, Aherne GW, Garrett MD, Mittnacht S, Pearl LH. EMBO J. 25 3179-3190 (2006)
  9. A comprehensive update of the sequence and structure classification of kinases. Cheek S, Ginalski K, Zhang H, Grishin NV. BMC Struct. Biol. 5 6 (2005)
  10. Type III effector activation via nucleotide binding, phosphorylation, and host target interaction. Desveaux D, Singer AU, Wu AJ, McNulty BC, Musselwhite L, Nimchuk Z, Sondek J, Dangl JL. PLoS Pathog. 3 e48 (2007)
  11. From the similarity analysis of protein cavities to the functional classification of protein families using cavbase. Kuhn D, Weskamp N, Schmitt S, Hüllermeier E, Klebe G. J Mol Biol 359 1023-1044 (2006)
  12. Identification of a novel mitogen-activated protein kinase kinase activation domain recognized by the inhibitor PD 184352. Delaney AM, Printen JA, Chen H, Fauman EB, Dudley DT. Mol. Cell. Biol. 22 7593-7602 (2002)
  13. Structural biology of TRP channels. Li M, Yu Y, Yang J. Adv. Exp. Med. Biol. 704 1-23 (2011)
  14. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. Negi SS, Braun W. J Mol Model 13 1157-1167 (2007)
  15. Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Malakhova M, Tereshko V, Lee SY, Yao K, Cho YY, Bode A, Dong Z. Nat. Struct. Mol. Biol. 15 112-113 (2008)
  16. A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life. Dudkiewicz M, Szczepińska T, Grynberg M, Pawłowski K. PLoS ONE 7 e32138 (2012)
  17. Novel isoform-specific interfaces revealed by PKA RIIbeta holoenzyme structures. Brown SH, Wu J, Kim C, Alberto K, Taylor SS. J. Mol. Biol. 393 1070-1082 (2009)
  18. A novel predicted calcium-regulated kinase family implicated in neurological disorders. Dudkiewicz M, Lenart A, Pawłowski K. PLoS ONE 8 e66427 (2013)
  19. Ligation site in proteins recognized in silico. Brylinski M, Konieczny L, Roterman I. Bioinformation 1 127-129 (2006)
  20. Molecular features of product release for the PKA catalytic cycle. Bastidas AC, Wu J, Taylor SS. Biochemistry 54 2-10 (2015)
  21. Multipolar representation of protein structure. Gramada A, Bourne PE. BMC Bioinformatics 7 242 (2006)
  22. Targeting aurora2 kinase in oncogenesis: a structural bioinformatics approach to target validation and rational drug design. Vankayalapati H, Bearss DJ, Saldanha JW, Muñoz RM, Rojanala S, Von Hoff DD, Mahadevan D. Mol Cancer Ther 2 283-294 (2003)
  23. Genomics, evolution, and crystal structure of a new family of bacterial spore kinases. Scheeff ED, Axelrod HL, Miller MD, Chiu HJ, Deacon AM, Wilson IA, Manning G. Proteins 78 1470-1482 (2010)
  24. Mutation of recombinant catalytic subunit alpha of the protein kinase CK2 that affects catalytic efficiency and specificity. Chaillot D, Declerck N, Niefind K, Schomburg D, Chardot T, Meunier JC. Protein Eng 13 291-298 (2000)
  25. DMAPS: a database of multiple alignments for protein structures. Guda C, Pal LR, Shindyalov IN. Nucleic Acids Res. 34 D273-6 (2006)
  26. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response. Chan TO, Zhang J, Tiegs BC, Blumhof B, Yan L, Keny N, Penny M, Li X, Pascal JM, Armen RS, Rodeck U, Penn RB. Biochem. J. 471 37-51 (2015)
  27. DAMA-a method for computing multiple alignments of protein structures using local structure descriptors. Daniluk P, Oleniecki T, Lesyng B. Bioinformatics btab571 (2021)
  28. Allnighter pseudokinase-mediated feedback links proteostasis and sleep in Drosophila. Shekhar S, Moehlman AT, Park B, Ewnetu M, Tracy C, Titos I, Pawłowski K, Tagliabracci VS, Krämer H. Nat Commun 14 2932 (2023)
  29. Anomalous dispersion analysis of inhibitor flexibility: a case study of the kinase inhibitor H-89. Pflug A, Johnson KA, Engh RA. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 873-877 (2012)
  30. Computation and molecular pharmacology to trace the anti-rheumatoid activity of Angelicae Pubescentis Radix. Zhang J, Wang R, Liang X, Bai HT, Li YL, Sun S, Zhang Q, Yang J. BMC Complement Med Ther 22 312 (2022)
  31. Geometry of protein shape and its evolutionary pattern for function prediction and characterization. Liang J. Conf Proc IEEE Eng Med Biol Soc 2009 2324-2327 (2009)
  32. Modulation of the substrate specificity of the kinase PDK1 by distinct conformations of the full-length protein. Sacerdoti M, Gross LZF, Riley AM, Zehnder K, Ghode A, Klinke S, Anand GS, Paris K, Winkel A, Herbrand AK, Godage HY, Cozier GE, Süß E, Schulze JO, Pastor-Flores D, Bollini M, Cappellari MV, Svergun D, Gräwert MA, Aramendia PF, Leroux AE, Potter BVL, Camacho CJ, Biondi RM. Sci Signal 16 eadd3184 (2023)


Reviews citing this publication (49)

  1. The conformational plasticity of protein kinases. Huse M, Kuriyan J. Cell 109 275-282 (2002)
  2. Active and inactive protein kinases: structural basis for regulation. Johnson LN, Noble ME, Owen DJ. Cell 85 149-158 (1996)
  3. Mechanisms of specificity in protein phosphorylation. Ubersax JA, Ferrell JE. Nat. Rev. Mol. Cell Biol. 8 530-541 (2007)
  4. Protein tyrosine kinase structure and function. Hubbard SR, Till JH. Annu. Rev. Biochem. 69 373-398 (2000)
  5. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Guerra B, Issinger OG. Electrophoresis 20 391-408 (1999)
  6. How do protein kinases recognize their substrates? Pinna LA, Ruzzene M. Biochim. Biophys. Acta 1314 191-225 (1996)
  7. Structures of Src-family tyrosine kinases. Sicheri F, Kuriyan J. Curr. Opin. Struct. Biol. 7 777-785 (1997)
  8. Three protein kinase structures define a common motif. Taylor SS, Radzio-Andzelm E. Structure 2 345-355 (1994)
  9. The many faces of H89: a review. Lochner A, Moolman JA. Cardiovasc Drug Rev 24 261-274 (2006)
  10. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu. Rev. Biochem. 81 587-613 (2012)
  11. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol. Cell 42 9-22 (2011)
  12. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Lassila JK, Zalatan JG, Herschlag D. Annu. Rev. Biochem. 80 669-702 (2011)
  13. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. Johnson LN, Lowe ED, Noble ME, Owen DJ. FEBS Lett. 430 1-11 (1998)
  14. Mechanisms of signaling and related enzymes. Mildvan AS. Proteins 29 401-416 (1997)
  15. The glycine-rich sequence of protein kinases: a multifunctional element. Bossemeyer D. Trends Biochem. Sci. 19 201-205 (1994)
  16. Domain movements in protein kinases. Cox S, Radzio-Andzelm E, Taylor SS. Curr. Opin. Struct. Biol. 4 893-901 (1994)
  17. Protein tyrosine phosphatases take off. Barford D, Jia Z, Tonks NK. Nat. Struct. Biol. 2 1043-1053 (1995)
  18. The genetic subtypes of cAMP-dependent protein kinase--functionally different or redundant? Døskeland SO, Maronde E, Gjertsen BT. Biochim. Biophys. Acta 1178 249-258 (1993)
  19. Structural analysis of receptor tyrosine kinases. Hubbard SR. Prog. Biophys. Mol. Biol. 71 343-358 (1999)
  20. How do kinases transfer phosphoryl groups? Matte A, Tari LW, Delbaere LT. Structure 6 413-419 (1998)
  21. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. Smith CM, Radzio-Andzelm E, Madhusudan, Akamine P, Taylor SS. Prog. Biophys. Mol. Biol. 71 313-341 (1999)
  22. Protein kinase regulation: insights from crystal structure analysis. Morgan DO, De Bondt HL. Curr. Opin. Cell Biol. 6 239-246 (1994)
  23. Control by phosphorylation. Johnson LN, O'Reilly M. Curr. Opin. Struct. Biol. 6 762-769 (1996)
  24. Structural aspects of protein kinase control-role of conformational flexibility. Engh RA, Bossemeyer D. Pharmacol. Ther. 93 99-111 (2002)
  25. Protein kinases--structure and function. Bossemeyer D. FEBS Lett. 369 57-61 (1995)
  26. X-linked agammaglobulinemia (XLA): a genetic tyrosine kinase (Btk) disease. Mattsson PT, Vihinen M, Smith CI. Bioessays 18 825-834 (1996)
  27. ZIP kinase, a key regulator of myosin protein phosphatase 1. Haystead TA. Cell. Signal. 17 1313-1322 (2005)
  28. H-series protein kinase inhibitors and potential clinical applications. Ono-Saito N, Niki I, Hidaka H. Pharmacol. Ther. 82 123-131 (1999)
  29. Protein kinases. Goldsmith EJ, Cobb MH. Curr. Opin. Struct. Biol. 4 833-840 (1994)
  30. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Chem. Rev. 116 6424-6462 (2016)
  31. Biology of Aurora A kinase: implications in cancer manifestation and therapy. Karthigeyan D, Prasad SB, Shandilya J, Agrawal S, Kundu TK. Med Res Rev 31 757-793 (2011)
  32. Phosphatidylinositol phosphate kinase: a link between protein kinase and glutathione synthase folds. Grishin NV. J. Mol. Biol. 291 239-247 (1999)
  33. Structures of staurosporine bound to CDK2 and cAPK--new tools for structure-based design of protein kinase inhibitors. Toledo LM, Lydon NB. Structure 5 1551-1556 (1997)
  34. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Taylor SS, Radzio-Andzelm E, Madhusudan, Cheng X, Ten Eyck L, Narayana N. Pharmacol. Ther. 82 133-141 (1999)
  35. Large-scale shape changes in proteins and macromolecular complexes. Wall ME, Gallagher SC, Trewhella J. Annu Rev Phys Chem 51 355-380 (2000)
  36. Control of sarcomeric assembly: the flow of information on titin. Gautel M, Mues A, Young P. Rev. Physiol. Biochem. Pharmacol. 138 97-137 (1999)
  37. Electrostatic effects in the control of glycogen phosphorylase by phosphorylation. Johnson LN, Barford D. Protein Sci. 3 1726-1730 (1994)
  38. Protein kinase inhibition: natural and synthetic variations on a theme. Taylor SS, Radzio-Andzelm E. Curr Opin Chem Biol 1 219-226 (1997)
  39. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv. Enzyme Regul. 41 121-149 (2001)
  40. NMR in natural products: understanding conformation, configuration and receptor interactions. Carlomagno T. Nat Prod Rep 29 536-554 (2012)
  41. Chemical approaches to the study of protein tyrosine kinases and their implications for mechanism and inhibitor design. Cole PA, Sondhi D, Kim K. Pharmacol. Ther. 82 219-229 (1999)
  42. Conformational diversity of catalytic cores of protein kinases. Sowadski JM, Epstein LF, Lankiewicz L, Karlsson R. Pharmacol. Ther. 82 157-164 (1999)
  43. Detergent binding to unmyristylated protein kinase A--structural implications for the role of myristate. Sowadski JM, Ellis CA, Madhusudan. J. Bioenerg. Biomembr. 28 7-12 (1996)
  44. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Darling AL, Uversky VN. Front Genet 9 158 (2018)
  45. A pickup in pseudokinase activity. Dar AC. Biochem. Soc. Trans. 41 987-994 (2013)
  46. Molecular basis for the regulation of the circadian clock kinases CK1δ and CK1ε. Yang Y, Xu T, Zhang Y, Qin X. Cell. Signal. 31 58-65 (2017)
  47. [Protein phosphatases and protein kinases in higher plants] Lessard P, Kreis M, Thomas M. C. R. Acad. Sci. III, Sci. Vie 320 675-688 (1997)
  48. Relevance of atypical protein kinase C isotypes to the drug discovery process. Jenny M, Wrulich OA, Schwaiger W, Ueberall F. Chembiochem 6 491-499 (2005)
  49. Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Seok SH. Life (Basel) 11 957 (2021)

Articles citing this publication (157)

  1. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Calalb MB, Polte TR, Hanks SK. Mol. Cell. Biol. 15 954-963 (1995)
  2. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Hubbard SR, Wei L, Ellis L, Hendrickson WA. Nature 372 746-754 (1994)
  3. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, Cantley LC. Curr. Biol. 4 973-982 (1994)
  4. Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Zhang F, Strand A, Robbins D, Cobb MH, Goldsmith EJ. Nature 367 704-711 (1994)
  5. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD. J. Cell Biol. 143 65-79 (1998)
  6. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Tong L, Pav S, White DM, Rogers S, Crane KM, Cywin CL, Brown ML, Pargellis CA. Nat. Struct. Biol. 4 311-316 (1997)
  7. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, Lippke J, Saxena K. Mol. Cell 13 169-178 (2004)
  8. A new method to detect related function among proteins independent of sequence and fold homology. Schmitt S, Kuhn D, Klebe G. J. Mol. Biol. 323 387-406 (2002)
  9. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Mohammadi M, Schlessinger J, Hubbard SR. Cell 86 577-587 (1996)
  10. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. De Azevedo WF, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH. Proc. Natl. Acad. Sci. U.S.A. 93 2735-2740 (1996)
  11. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Zheng J, Knighton DR, Xuong NH, Taylor SS, Sowadski JM, Ten Eyck LF. Protein Sci. 2 1559-1573 (1993)
  12. Mechanoenzymatics of titin kinase. Puchner EM, Alexandrovich A, Kho AL, Hensen U, Schäfer LV, Brandmeier B, Gräter F, Grubmüller H, Gaub HE, Gautel M. Proc. Natl. Acad. Sci. U.S.A. 105 13385-13390 (2008)
  13. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Goldberg J, Nairn AC, Kuriyan J. Cell 84 875-887 (1996)
  14. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Mol. Cell 7 1047-1057 (2001)
  15. cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Madhusudan, Trafny EA, Xuong NH, Adams JA, Ten Eyck LF, Taylor SS, Sowadski JM. Protein Sci. 3 176-187 (1994)
  16. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. Cavarelli J, Eriani G, Rees B, Ruff M, Boeglin M, Mitschler A, Martin F, Gangloff J, Thierry JC, Moras D. EMBO J. 13 327-337 (1994)
  17. A conserved protonation-dependent switch controls drug binding in the Abl kinase. Shan Y, Seeliger MA, Eastwood MP, Frank F, Xu H, Jensen MØ, Dror RO, Kuriyan J, Shaw DE. Proc. Natl. Acad. Sci. U.S.A. 106 139-144 (2009)
  18. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. Niefind K, Guerra B, Pinna LA, Issinger OG, Schomburg D. EMBO J. 17 2451-2462 (1998)
  19. Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Ward WH, Cook PN, Slater AM, Davies DH, Holdgate GA, Green LR. Biochem. Pharmacol. 48 659-666 (1994)
  20. Insights into autoregulation from the crystal structure of twitchin kinase. Hu SH, Parker MW, Lei JY, Wilce MC, Benian GM, Kemp BE. Nature 369 581-584 (1994)
  21. Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Xie X, Gu Y, Fox T, Coll JT, Fleming MA, Markland W, Caron PR, Wilson KP, Su MS. Structure 6 983-991 (1998)
  22. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. Lowe ED, Noble ME, Skamnaki VT, Oikonomakos NG, Owen DJ, Johnson LN. EMBO J. 16 6646-6658 (1997)
  23. Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Brinkworth RI, Breinl RA, Kobe B. Proc. Natl. Acad. Sci. U.S.A. 100 74-79 (2003)
  24. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Xing W, Zou Y, Liu Q, Liu J, Luo X, Huang Q, Chen S, Zhu L, Bi R, Hao Q, Wu JW, Zhou JM, Chai J. Nature 449 243-247 (2007)
  25. Crystal structure of casein kinase-1, a phosphate-directed protein kinase. Xu RM, Carmel G, Sweet RM, Kuret J, Cheng X. EMBO J. 14 1015-1023 (1995)
  26. Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. Gräter F, Shen J, Jiang H, Gautel M, Grubmüller H. Biophys. J. 88 790-804 (2005)
  27. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Schulze-Gahmen U, Brandsen J, Jones HD, Morgan DO, Meijer L, Vesely J, Kim SH. Proteins 22 378-391 (1995)
  28. Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Min X, Lee BH, Cobb MH, Goldsmith EJ. Structure 12 1303-1311 (2004)
  29. Crystal structure of aurora-2, an oncogenic serine/threonine kinase. Cheetham GM, Knegtel RM, Coll JT, Renwick SB, Swenson L, Weber P, Lippke JA, Austen DA. J. Biol. Chem. 277 42419-42422 (2002)
  30. Human dUTP pyrophosphatase: uracil recognition by a beta hairpin and active sites formed by three separate subunits. Mol CD, Harris JM, McIntosh EM, Tainer JA. Structure 4 1077-1092 (1996)
  31. Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. Ortiz-Lombardía M, Pompeo F, Boitel B, Alzari PM. J. Biol. Chem. 278 13094-13100 (2003)
  32. Sequence and structure classification of kinases. Cheek S, Zhang H, Grishin NV. J. Mol. Biol. 320 855-881 (2002)
  33. Crystal structure of inhibitor of κB kinase β. Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, Wu H. Nature 472 325-330 (2011)
  34. Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of selectivity. Breitenlechner C, Gassel M, Hidaka H, Kinzel V, Huber R, Engh RA, Bossemeyer D. Structure 11 1595-1607 (2003)
  35. Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure. Akamine P, Madhusudan, Wu J, Xuong NH, Ten Eyck LF, Taylor SS. J. Mol. Biol. 327 159-171 (2003)
  36. Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Owen DJ, Noble ME, Garman EF, Papageorgiou AC, Johnson LN. Structure 3 467-482 (1995)
  37. A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility. Narayana N, Cox S, Nguyen-huu X, Ten Eyck LF, Taylor SS. Structure 5 921-935 (1997)
  38. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Admiraal SJ, Herschlag D. Chem. Biol. 2 729-739 (1995)
  39. The structure of phosphorylated p38gamma is monomeric and reveals a conserved activation-loop conformation. Bellon S, Fitzgibbon MJ, Fox T, Hsiao HM, Wilson KP. Structure 7 1057-1065 (1999)
  40. Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability. Auerbach G, Huber R, Grättinger M, Zaiss K, Schurig H, Jaenicke R, Jacob U. Structure 5 1475-1483 (1997)
  41. Crystal structure of an inactive Akt2 kinase domain. Huang X, Begley M, Morgenstern KA, Gu Y, Rose P, Zhao H, Zhu X. Structure 11 21-30 (2003)
  42. Structural basis for potent inhibition of the Aurora kinases and a T315I multi-drug resistant mutant form of Abl kinase by VX-680. Cheetham GM, Charlton PA, Golec JM, Pollard JR. Cancer Lett. 251 323-329 (2007)
  43. Adenine recognition: a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins. Denessiouk KA, Rantanen VV, Johnson MS. Proteins 44 282-291 (2001)
  44. Crystal structure of the catalytic domain of human atypical protein kinase C-iota reveals interaction mode of phosphorylation site in turn motif. Messerschmidt A, Macieira S, Velarde M, Bädeker M, Benda C, Jestel A, Brandstetter H, Neuefeind T, Blaesse M. J. Mol. Biol. 352 918-931 (2005)
  45. Giant protein kinases: domain interactions and structural basis of autoregulation. Kobe B, Heierhorst J, Feil SC, Parker MW, Benian GM, Weiss KR, Kemp BE. EMBO J. 15 6810-6821 (1996)
  46. The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. Schneider EV, Böttcher J, Blaesse M, Neumann L, Huber R, Maskos K. J. Mol. Biol. 412 251-266 (2011)
  47. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Denessiouk KA, Johnson MS. Proteins 38 310-326 (2000)
  48. Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements. Hayward S. J. Mol. Biol. 339 1001-1021 (2004)
  49. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Xie H, Braha O, Gu LQ, Cheley S, Bayley H. Chem. Biol. 12 109-120 (2005)
  50. Crystal structure of a cAMP-dependent protein kinase mutant at 1.26A: new insights into the catalytic mechanism. Yang J, Ten Eyck LF, Xuong NH, Taylor SS. J. Mol. Biol. 336 473-487 (2004)
  51. Structural basis for chromosome X-linked agammaglobulinemia: a tyrosine kinase disease. Vihinen M, Vetrie D, Maniar HS, Ochs HD, Zhu Q, Vorechovský I, Webster AD, Notarangelo LD, Nilsson L, Sowadski JM. Proc. Natl. Acad. Sci. U.S.A. 91 12803-12807 (1994)
  52. Structure-kinetic relationship study of CDK8/CycC specific compounds. Schneider EV, Böttcher J, Huber R, Maskos K, Neumann L. Proc. Natl. Acad. Sci. U.S.A. 110 8081-8086 (2013)
  53. Crystal structure of the TAO2 kinase domain: activation and specificity of a Ste20p MAP3K. Zhou T, Raman M, Gao Y, Earnest S, Chen Z, Machius M, Cobb MH, Goldsmith EJ. Structure 12 1891-1900 (2004)
  54. Precision substrate targeting of protein kinases. The cGMP- and cAMP-dependent protein kinases. Wood JS, Yan X, Mendelow M, Corbin JD, Francis SH, Lawrence DS. J. Biol. Chem. 271 174-179 (1996)
  55. Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Shaltiel S, Cox S, Taylor SS. Proc. Natl. Acad. Sci. U.S.A. 95 484-491 (1998)
  56. Crystal structure of the protein kinase domain of yeast AMP-activated protein kinase Snf1. Rudolph MJ, Amodeo GA, Bai Y, Tong L. Biochem. Biophys. Res. Commun. 337 1224-1228 (2005)
  57. Letter Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1. Yan L, Ma Y, Liu D, Wei X, Sun Y, Chen X, Zhao H, Zhou J, Wang Z, Shui W, Lou Z. Cell Res. 22 1304-1308 (2012)
  58. Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution. Yan Y, Munshi S, Leiting B, Anderson MS, Chrzas J, Chen Z. J. Mol. Biol. 304 435-445 (2000)
  59. 600 ps molecular dynamics reveals stable substructures and flexible hinge points in cAMP dependent protein kinase. Tsigelny I, Greenberg JP, Cox S, Nichols WL, Taylor SS, Ten Eyck LF. Biopolymers 50 513-524 (1999)
  60. The role of the metal ion in the p21ras catalysed GTP-hydrolysis: Mn2+ versus Mg2+. Schweins T, Scheffzek K, Assheuer R, Wittinghofer A. J. Mol. Biol. 266 847-856 (1997)
  61. ATP binding proteins with different folds share a common ATP-binding structural motif. Kobayashi N, Go N. Nat. Struct. Biol. 4 6-7 (1997)
  62. How does activation loop phosphorylation modulate catalytic activity in the cAMP-dependent protein kinase: a theoretical study. Cheng Y, Zhang Y, McCammon JA. Protein Sci. 15 672-683 (2006)
  63. The catalytic subunit of Dictyostelium cAMP-dependent protein kinase -- role of the N-terminal domain and of the C-terminal residues in catalytic activity and stability. Etchebehere LC, Van Bemmelen MX, Anjard C, Traincard F, Assemat K, Reymond C, Véron M. Eur. J. Biochem. 248 820-826 (1997)
  64. A new approach for the detection of multiple protein kinases using monoclonal antibodies directed to the highly conserved region of protein kinases. Kameshita I, Tsuge T, Kinashi T, Kinoshita S, Sueyoshi N, Ishida A, Taketani S, Shigeri Y, Tatsu Y, Yumoto N, Okazaki K. Anal. Biochem. 322 215-224 (2003)
  65. Contribution of non-catalytic core residues to activity and regulation in protein kinase A. Yang J, Kennedy EJ, Wu J, Deal MS, Pennypacker J, Ghosh G, Taylor SS. J. Biol. Chem. 284 6241-6248 (2009)
  66. Evidence for an internal entropy contribution to phosphoryl transfer: a study of domain closure, backbone flexibility, and the catalytic cycle of cAMP-dependent protein kinase. Li F, Gangal M, Juliano C, Gorfain E, Taylor SS, Johnson DA. J. Mol. Biol. 315 459-469 (2002)
  67. The crystal structures of chloramphenicol phosphotransferase reveal a novel inactivation mechanism. Izard T, Ellis J. EMBO J. 19 2690-2700 (2000)
  68. RIO1, an extraordinary novel protein kinase. Angermayr M, Bandlow W. FEBS Lett. 524 31-36 (2002)
  69. The crystal structure of the Physarum polycephalum actin-fragmin kinase: an atypical protein kinase with a specialized substrate-binding domain. Steinbacher S, Hof P, Eichinger L, Schleicher M, Gettemans J, Vandekerckhove J, Huber R, Benz J. EMBO J. 18 2923-2929 (1999)
  70. A conserved deamidation site at Asn 2 in the catalytic subunit of mammalian cAMP-dependent protein kinase detected by capillary LC-MS and tandem mass spectrometry. Jedrzejewski PT, Girod A, Tholey A, König N, Thullner S, Kinzel V, Bossemeyer D. Protein Sci. 7 457-469 (1998)
  71. Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii. Xue B, Jeffers V, Sullivan WJ, Uversky VN. Mol Biosyst 9 645-657 (2013)
  72. Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr-specific protein kinase. Stocchetto S, Marin O, Carignani G, Pinna LA. FEBS Lett. 414 171-175 (1997)
  73. Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (AKT). Gassel M, Breitenlechner CB, Rüger P, Jucknischke U, Schneider T, Huber R, Bossemeyer D, Engh RA. J. Mol. Biol. 329 1021-1034 (2003)
  74. Modelling study of protein kinase inhibitors: binding mode of staurosporine and origin of the selectivity of CGP 52411. Furet P, Caravatti G, Lydon N, Priestle JP, Sowadski JM, Trinks U, Traxler P. J. Comput. Aided Mol. Des. 9 465-472 (1995)
  75. Role of N-terminal myristylation in the structure and regulation of cAMP-dependent protein kinase. Bastidas AC, Deal MS, Steichen JM, Keshwani MM, Guo Y, Taylor SS. J. Mol. Biol. 422 215-229 (2012)
  76. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. Vijayan RS, He P, Modi V, Duong-Ly KC, Ma H, Peterson JR, Dunbrack RL, Levy RM. J. Med. Chem. 58 466-479 (2015)
  77. Homology model of RSK2 N-terminal kinase domain, structure-based identification of novel RSK2 inhibitors, and preliminary common pharmacophore. Nguyen TL, Gussio R, Smith JA, Lannigan DA, Hecht SM, Scudiero DA, Shoemaker RH, Zaharevitz DW. Bioorg. Med. Chem. 14 6097-6105 (2006)
  78. Two "unrelated" families of ATP-dependent enzymes share extensive structural similarities about their cofactor binding sites. Denessiouk KA, Lehtonen JV, Korpela T, Johnson MS. Protein Sci. 7 1136-1146 (1998)
  79. Crystal structure of the kinase domain of serum and glucocorticoid-regulated kinase 1 in complex with AMP PNP. Zhao B, Lehr R, Smallwood AM, Ho TF, Maley K, Randall T, Head MS, Koretke KK, Schnackenberg CG. Protein Sci. 16 2761-2769 (2007)
  80. The protein kinase C inhibitor bisindolyl maleimide 2 binds with reversed orientations to different conformations of protein kinase A. Gassel M, Breitenlechner CB, König N, Huber R, Engh RA, Bossemeyer D. J. Biol. Chem. 279 23679-23690 (2004)
  81. Molecular design and biological activity of potent and selective protein kinase inhibitors related to balanol. Koide K, Bunnage ME, Gomez Paloma L, Kanter JR, Taylor SS, Brunton LL, Nicolaou KC. Chem. Biol. 2 601-608 (1995)
  82. A structural model of the catalytic subunit-regulatory subunit dimeric complex of the cAMP-dependent protein kinase. Tung CS, Walsh DA, Trewhella J. J. Biol. Chem. 277 12423-12431 (2002)
  83. Activation of Dictyostelium myosin light chain kinase A by phosphorylation of Thr166. Smith JL, Silveira LA, Spudich JA. EMBO J. 15 6075-6083 (1996)
  84. Structural analysis of protein kinase A mutants with Rho-kinase inhibitor specificity. Bonn S, Herrero S, Breitenlechner CB, Erlbruch A, Lehmann W, Engh RA, Gassel M, Bossemeyer D. J Biol Chem 281 24818-24830 (2006)
  85. Structural aspects of the functional modules in human protein kinase-C alpha deduced from comparative analyses. Srinivasan N, Bax B, Blundell TL, Parker PJ. Proteins 26 217-235 (1996)
  86. 2.0 A resolution structure of a ternary complex of pig muscle phosphoglycerate kinase containing 3-phospho-D-glycerate and the nucleotide Mn adenylylimidodiphosphate. May A, Vas M, Harlos K, Blake C. Proteins 24 292-303 (1996)
  87. Enzyme-mononucleotide interactions: three different folds share common structural elements for ATP recognition. Denessiouk KA, Lehtonen JV, Johnson MS. Protein Sci. 7 1768-1771 (1998)
  88. Finding local structural similarities among families of unrelated protein structures: a generic non-linear alignment algorithm. Lehtonen JV, Denessiouk K, May AC, Johnson MS. Proteins 34 341-355 (1999)
  89. Why an A-loop phospho-mimetic fails to activate PAK1: understanding an inaccessible kinase state by molecular dynamics simulations. Ng YW, Raghunathan D, Chan PM, Baskaran Y, Smith DJ, Lee CH, Verma C, Manser E. Structure 18 879-890 (2010)
  90. Classification of common functional loops of kinase super-families. Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Proteins 56 539-555 (2004)
  91. Crystallography-independent determination of ligand binding modes. Orts J, Tuma J, Reese M, Grimm SK, Monecke P, Bartoschek S, Schiffer A, Wendt KU, Griesinger C, Carlomagno T. Angew. Chem. Int. Ed. Engl. 47 7736-7740 (2008)
  92. Identification of the substrate and pseudosubstrate binding sites of phosphorylase kinase gamma-subunit. Huang CY, Yuan CJ, Blumenthal DK, Graves DJ. J. Biol. Chem. 270 7183-7188 (1995)
  93. In silico activation of Src tyrosine kinase reveals the molecular basis for intramolecular autophosphorylation. Mendieta J, Gago F. J. Mol. Graph. Model. 23 189-198 (2004)
  94. Site-directed mutagenesis and structure/function studies of casein kinase II correlate stimulation of activity by the beta subunit with changes in conformation and ATP/GTP utilization. Jakobi R, Traugh JA. Eur. J. Biochem. 230 1111-1117 (1995)
  95. In vivo activation of recombinant cAPK catalytic subunit active site mutants by coexpression of the wild-type enzyme, evidence for intermolecular cotranslational phosphorylation. Girod A, Kinzel V, Bossemeyer D. FEBS Lett. 391 121-125 (1996)
  96. A QM/MM study of the phosphoryl transfer to the Kemptide substrate catalyzed by protein kinase A. The effect of the phosphorylation state of the protein on the mechanism. Montenegro M, Garcia-Viloca M, Lluch JM, González-Lafont A. Phys Chem Chem Phys 13 530-539 (2011)
  97. Coding sequence mutations in the alpha subunit of propionyl-CoA carboxylase in patients with propionic acidemia. Campeau E, Dupuis L, León-Del-Rio A, Gravel R. Mol. Genet. Metab. 67 11-22 (1999)
  98. Diversity of bisubstrate binding modes of adenosine analogue-oligoarginine conjugates in protein kinase a and implications for protein substrate interactions. Pflug A, Rogozina J, Lavogina D, Enkvist E, Uri A, Engh RA, Bossemeyer D. J. Mol. Biol. 403 66-77 (2010)
  99. Interpreting linear support vector machine models with heat map molecule coloring. Rosenbaum L, Hinselmann G, Jahn A, Zell A. J Cheminform 3 11 (2011)
  100. Modulation of erbB kinase activity and oncogenic potential by single point mutations in the glycine loop of the catalytic domain. Shu HK, Chang CM, Ravi L, Ling L, Castellano CM, Walter E, Pelley RJ, Kung HJ. Mol. Cell. Biol. 14 6868-6878 (1994)
  101. Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Vihinen M, Villa A, Mella P, Schumacher RF, Savoldi G, O'Shea JJ, Candotti F, Notarangelo LD. Clin. Immunol. 96 108-118 (2000)
  102. 3(10)-Helix adjoining alpha-helix and beta-strand: sequence and structural features and their conservation. Pal L, Dasgupta B, Chakrabarti P. Biopolymers 78 147-162 (2005)
  103. An Isoform-Specific Myristylation Switch Targets Type II PKA Holoenzymes to Membranes. Zhang P, Ye F, Bastidas AC, Kornev AP, Wu J, Ginsberg MH, Taylor SS. Structure 23 1563-1572 (2015)
  104. Kinase conformations: a computational study of the effect of ligand binding. Helms V, McCammon JA. Protein Sci. 6 2336-2343 (1997)
  105. Influence of N-myristylation and ligand binding on the flexibility of the catalytic subunit of protein kinase A. Bastidas AC, Pierce LC, Walker RC, Johnson DA, Taylor SS. Biochemistry 52 6368-6379 (2013)
  106. Phosphoryl Transfer Reaction Snapshots in Crystals: INSIGHTS INTO THE MECHANISM OF PROTEIN KINASE A CATALYTIC SUBUNIT. Gerlits O, Tian J, Das A, Langan P, Heller WT, Kovalevsky A. J. Biol. Chem. 290 15538-15548 (2015)
  107. Probing the catalytic mechanism of the insulin receptor kinase with a tetrafluorotyrosine-containing peptide substrate. Ablooglu AJ, Till JH, Kim K, Parang K, Cole PA, Hubbard SR, Kohanski RA. J. Biol. Chem. 275 30394-30398 (2000)
  108. Bound to activate: conformational consequences of cyclin binding to CDK2. Radzio-Andzelm E, Lew J, Taylor S. Structure 3 1135-1141 (1995)
  109. Identification of csk tyrosine phosphorylation sites and a tyrosine residue important for kinase domain structure. Joukov V, Vihinen M, Vainikka S, Sowadski JM, Alitalo K, Bergman M. Biochem. J. 322 ( Pt 3) 927-935 (1997)
  110. Letter Loss of kinase activity. Bossemeyer D. Nature 363 590 (1993)
  111. The identification of a new actin-binding region in p57. Liu CZ, Chen Y, Sui SF. Cell Res. 16 106-112 (2006)
  112. The testis-specific Cα2 subunit of PKA is kinetically indistinguishable from the common Cα1 subunit of PKA. Vetter MM, Zenn HM, Méndez E, van den Boom H, Herberg FW, Skålhegg BS. BMC Biochem. 12 40 (2011)
  113. A QM/MM study of the associative mechanism for the phosphorylation reaction catalyzed by protein kinase A and its D166A mutant. Pérez-Gallegos A, Garcia-Viloca M, González-Lafont À, Lluch JM. J. Comput. Aided Mol. Des. 28 1077-1091 (2014)
  114. A computational analysis of substrate binding strength by phosphorylase kinase and protein kinase A. Brinkworth RI, Horne J, Kobe B. J. Mol. Recognit. 15 104-111 (2002)
  115. Con-Struct Map: a comparative contact map analysis tool. Chung JL, Beaver JE, Scheeff ED, Bourne PE. Bioinformatics 23 2491-2492 (2007)
  116. Digital cloning: identification of human cDNAs homologous to novel kinases through expressed sequence tag database searching. Chen HC, Kung HJ, Robinson D. J. Biomed. Sci. 5 86-92 (1998)
  117. Molecular docking and 3D QSAR studies of Chk2 inhibitors. Pasha FA, Muddassar M, Joo Cho S. Chem Biol Drug Des 73 292-300 (2009)
  118. Novel shuttling domain in a regulator (RSC1A1) of transporter SGLT1 steers cell cycle-dependent nuclear location. Filatova A, Leyerer M, Gorboulev V, Chintalapati C, Reinders Y, Müller TD, Srinivasan A, Hübner S, Koepsell H. Traffic 10 1599-1618 (2009)
  119. Structural and functional analysis of the natural JNK1 inhibitor quercetagetin. Baek S, Kang NJ, Popowicz GM, Arciniega M, Jung SK, Byun S, Song NR, Heo YS, Kim BY, Lee HJ, Holak TA, Augustin M, Bode AM, Huber R, Dong Z, Lee KW. J. Mol. Biol. 425 411-423 (2013)
  120. A QM/MM study of Kemptide phosphorylation catalyzed by protein kinase A. The role of Asp166 as a general acid/base catalyst. Pérez-Gallegos A, Garcia-Viloca M, González-Lafont À, Lluch JM. Phys Chem Chem Phys 17 3497-3511 (2015)
  121. A computational study of the phosphorylation mechanism of the insulin receptor tyrosine kinase. Zhou B, Wong CF. J Phys Chem A 113 5144-5150 (2009)
  122. A minimalist approach to fragment-based ligand design using common rings and linkers: application to kinase inhibitors. Aronov AM, Bemis GW. Proteins 57 36-50 (2004)
  123. An investigation of the role of Glu-842, Glu-844 and His-846 in the function of the cytoplasmic domain of the epidermal growth factor receptor. Timms JF, Noble ME, Gregoriou M. Biochem. J. 308 ( Pt 1) 219-229 (1995)
  124. Anti-head and anti-tail antibodies against distinct epitopes in the catalytic subunit of protein kinase A. Use in the study of the kinase splitting membranal proteinase KSMP. Chestukhin A, Litovchick L, Batkin M, Shaltiel S. FEBS Lett. 382 265-270 (1996)
  125. Crystal structures of apo and inhibitor-bound TGFβR2 kinase domain: insights into TGFβR isoform selectivity. Tebben AJ, Ruzanov M, Gao M, Xie D, Kiefer SE, Yan C, Newitt JA, Zhang L, Kim K, Lu H, Kopcho LM, Sheriff S. Acta Crystallogr D Struct Biol 72 658-674 (2016)
  126. Design and synthesis of inositolphosphoglycan putative insulin mediators. López-Prados J, Cuevas F, Reichardt NC, de Paz JL, Morales EQ, Martín-Lomas M. Org. Biomol. Chem. 3 764-786 (2005)
  127. Structural basis for the autoinhibition of the C-terminal kinase domain of human RSK1. Li D, Fu TM, Nan J, Liu C, Li LF, Su XD. Acta Crystallogr. D Biol. Crystallogr. 68 680-685 (2012)
  128. Calculating pKa values in the cAMP-dependent protein kinase: the effect of conformational change and ligand binding. Bjarnadottir U, Nielsen JE. Protein Sci. 19 2485-2497 (2010)
  129. Comparative study of the prereactive protein kinase A Michaelis complex with kemptide substrate. Montenegro M, Garcia-Viloca M, González-Lafont A, Lluch JM. J. Comput. Aided Mol. Des. 21 603-615 (2007)
  130. Conformationally constrained analogs of protein kinase inhibitor (6-22)amide: effect of turn structures in the center of the peptide on inhibition of cAMP-dependent protein kinase. Glass DB, Trewhella J, Mitchell RD, Walsh DA. Protein Sci. 4 405-415 (1995)
  131. Expression and biochemical characterization of the Plasmodium falciparum protein kinase A catalytic subunit. Wurtz N, Pastorino B, Almeras L, Briolant S, Villard C, Parzy D. Parasitol. Res. 104 1299-1305 (2009)
  132. Mutants of protein kinase A that mimic the ATP-binding site of Aurora kinase. Pflug A, de Oliveira TM, Bossemeyer D, Engh RA. Biochem. J. 440 85-93 (2011)
  133. Rearrangements in a hydrophobic core region mediate cAMP action in the regulatory subunit of PKA. Hahnefeld C, Moll D, Goette M, Herberg FW. Biol. Chem. 386 623-631 (2005)
  134. Characterisation of the N'1 isoform of the cyclic AMP-dependent protein kinase (PK-A) catalytic subunit in the nematode, Caenorhabditis elegans. Clegg RA, Bowen LC, Bicknell AV, Tabish M, Prescott MC, Rees HH, Fisher MJ. Arch. Biochem. Biophys. 519 38-45 (2012)
  135. DnaA protein Lys-415 is close to the ATP-binding site: ATP-pyridoxal affinity labeling. Kubota T, Ito Y, Sekimizu K, Tagaya M, Katayama T. Biochem. Biophys. Res. Commun. 288 1141-1148 (2001)
  136. Involvement of intramolecular interactions in the regulation of G protein-coupled receptor kinase 2. Sarnago S, Roca R, de Blasi A, Valencia A, Mayor F, Murga C. Mol Pharmacol 64 629-639 (2003)
  137. Phosphorylation and ATP-binding induced conformational changes in the PrkC, Ser/Thr kinase from B. subtilis. Gruszczyński P, Obuchowski M, Kaźmierkiewicz R. J. Comput. Aided Mol. Des. 24 733-747 (2010)
  138. Specific methyl group protonation for the measurement of pharmacophore-specific interligand NOE interactions. Orts J, Grimm SK, Griesinger C, Wendt KU, Bartoschek S, Carlomagno T. Chemistry 14 7517-7520 (2008)
  139. Subdomain VIII is a specificity-determining region in MEKK1. Tu Z, Lee FS. J. Biol. Chem. 278 48498-48505 (2003)
  140. Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways. Chu WT, Chu X, Wang J. Proc. Natl. Acad. Sci. U.S.A. 114 E7959-E7968 (2017)
  141. Crystal structure of the MAP3K TAO2 kinase domain bound by an inhibitor staurosporine. Zhou TJ, Sun LG, Gao Y, Goldsmith EJ. Acta Biochim. Biophys. Sin. (Shanghai) 38 385-392 (2006)
  142. Mutation in Abl kinase with altered drug-binding kinetics indicates a novel mechanism of imatinib resistance. Lyczek A, Berger BT, Rangwala AM, Paung Y, Tom J, Philipose H, Guo J, Albanese SK, Robers MB, Knapp S, Chodera JD, Seeliger MA. Proc Natl Acad Sci U S A 118 e2111451118 (2021)
  143. Protein kinase A type I activates a CRE-element more efficiently than protein kinase A type II regardless of C subunit isoform. Stakkestad Ø, Larsen AC, Kvissel AK, Eikvar S, Ørstavik S, Skålhegg BS. BMC Biochem. 12 7 (2011)
  144. Stimulation of cGMP-dependent protein kinase I alpha by a peptide from its own sequence. An investigation by enzymology, circular dichroism and 1H NMR of the activity and structure of cGMP-dependent protein kinase I alpha-(546-576)-peptide amide. Huggins JP, Ganzhorn AJ, Saudek V, Pelton JT, Atkinson RA. Eur. J. Biochem. 221 581-593 (1994)
  145. Understanding how cAMP-dependent protein kinase can catalyze phosphoryl transfer in the presence of Ca2+ and Sr2+: a QM/MM study. Pérez-Gallegos A, Garcia-Viloca M, González-Lafont À, Lluch JM. Phys Chem Chem Phys 19 10377-10394 (2017)
  146. From Structure to Function: A New Approach to Detect Functional Similarity among Proteins Independent from Sequence and Fold Homology. Schmitt S, Hendlich M, Klebe G. Angew. Chem. Int. Ed. Engl. 40 3141-3144 (2001)
  147. MgATP-induced conformational change of the catalytic subunit of cAMP-dependent protein kinase. Yang S, Rogers KM, Johnson DA. Biophys. Chem. 113 193-199 (2005)
  148. Study of the affinity between the protein kinase PKA and homoarginine-containing peptides derived from kemptide: Free energy perturbation (FEP) calculations. Mena-Ulecia K, Gonzalez-Norambuena F, Vergara-Jaque A, Poblete H, Tiznado W, Caballero J. J Comput Chem 39 986-992 (2018)
  149. Targeting PKC-β II by Peptides and Peptidomimetics Derived from RACK 1: An In Silico Approach. Jain K, Sobhia ME. Mol Inform 30 45-62 (2011)
  150. Back From the Dead: The Atypical Kinase Activity of a Pseudokinase Regulator of Cation Fluxes During Inducible Immunity. Brauer EK, Ahsan N, Popescu GV, Thelen JJ, Popescu SC. Front Plant Sci 13 931324 (2022)
  151. Computational delineation of tyrosyl-substrate recognition and catalytic landscapes by the epidermal growth factor receptor tyrosine kinase domain. Liu Y, Radhakrishnan R. Mol Biosyst 10 1890-1904 (2014)
  152. Edmond Fischer's kinase legacy: History of the protein kinase inhibitor and protein kinase A. Taylor SS, Herberg FW, Veglia G, Wu J. IUBMB Life 75 311-323 (2023)
  153. Investigating Phosphorylation-Induced Conformational Changes in WNK1 Kinase by Molecular Dynamics Simulations. Jonniya NA, Sk MF, Kar P. ACS Omega 4 17404-17416 (2019)
  154. Structural basis for X-linked agammaglobulinemia (XLA): mutations at interacting Btk residues R562, W563, and A582. Maniar HS, Vihinen M, Webster AD, Nilsson L, Smith CI. Clin. Immunol. Immunopathol. 76 S198-202 (1995)
  155. Structural characterizations of phosphorylatable residues in transmembrane proteins from Arabidopsis thaliana. Xue B, Uversky VN. Intrinsically Disord Proteins 1 e25713 (2013)
  156. Structures of PKA-phospholamban complexes reveal a mechanism of familial dilated cardiomyopathy. Qin J, Zhang J, Lin L, Haji-Ghassemi O, Lin Z, Woycechowsky KJ, Van Petegem F, Zhang Y, Yuchi Z. Elife 11 e75346 (2022)
  157. The Interaction between the Drosophila EAG Potassium Channel and the Protein Kinase CaMKII Involves an Extensive Interface at the Active Site of the Kinase. Castro-Rodrigues AF, Zhao Y, Fonseca F, Gabant G, Cadene M, Robertson GA, Morais-Cabral JH. J. Mol. Biol. 430 5029-5049 (2018)


Related citations provided by authors (7)

  1. 2.2 Angstrom Refined Crystal Structure of the Catalytic Subunit of cAMP-Dependent Protein Kinase Complexed with Mnatp and a Peptide Inhibitor. Zheng J, Trafny EA, Knighton DR, Xuong N-H, Taylor SS, Ten Eyck LF, Sowadski JM Acta Crystallogr. D Biol. Crystallogr. 49 362- (1993)
  2. Crystal Structures of the Myristylated Catalytic Subunit Ofcamp-Dependent Kinase Reveal Open and Closed Conformation. Zheng J, Knighton DR, Xuong N-H, Taylor SS, Sowadski JM, Ten Eyck LF Protein Sci. 2 1559- (1993)
  3. Crystal Structure of the Catalytic Subunit of Cyclic Adenosine Monophosphate Dependent-Protein Kinase. Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong N-H, Taylor SS, Sowadski JM Science 253 407- (1991)
  4. Structure of a Peptide Inhibitor Bound to the Catalytic Subunit of a Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Knighton DR, Zheng J, Ten Eyck LF, Xoung N-H, Taylor SS, Sowadski JM Science 253 414- (1991)
  5. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane.. Thelen M, Rosen A, Nairn AC, Aderem A Nature 351 320-2 (1991)
  6. A Sequence Variant in the N-Terminal Region of the Catalytic Subunit of the cAMP-Dependent Protein Kinase. Hotz A, Konig N, Kretschmer J, Maier G, Ponstingl H, Kinzel V FEBS Lett. 256 115- (1989)
  7. Characterization of Genomic Clones Coding for the C-Alpha and C-Beta Subunits of Mouse Camp Dependent Protein Kinase. Chrivia JC, Uhler MD, Mcknight GS J. Biol. Chem. 263 5739- (1988)