1bu1 Citations

RT loop flexibility enhances the specificity of Src family SH3 domains for HIV-1 Nef.

Biochemistry 37 14683-91 (1998)
Cited: 77 times
EuropePMC logo PMID: 9778343

Abstract

Understanding the issue of specificity imposed in the interactions of SH3 domains has largely been addressed in studies investigating the interaction of proline-rich amino acid sequences derived from potential ligands for these domains. Although the interaction with this motif forms an essential platform in the binding of SH3 domains, in many cases little specificity is observed and the difference in affinity for so-called specific and nonspecific proline-rich sequences is not great. Furthermore, the binding interface between an SH3 domain and a protein ligand appears to encompass more interactions than are represented by that involving the proline-rich motif. Here we investigate the issue of specificity from the opposite point of view; namely, how does a ligand recognize different SH3 domains? We present the crystal structure of the unbound SH3 domain from hemopoietic cell kinase (Hck) which is a member of the Src family of tyrosine kinases. This structure reveals that, unlike the structures of other Src kinase SH3 domains, the RT loop region is highly mobile and lacks a network of hydrogen bonds that is elsewhere apparent. The RT loop has been shown to form a major part of the binding interface between SH3 domains and HIV-1 Nef. Thermodynamic data, derived from isothermal titration calorimetry, for the binding of Hck SH3 to HIV-1 Nef show that the binding of Hck (KD = 1.5 microM) is approximately an order of magnitude tighter than those of other Src family kinases that were investigated (Fyn, Lck, and Src). This increase in affinity is attributed to, among other effects, the inherent flexibility in the RT loop which does not require breaking the network of hydrogen bonds to adopt the conformation required for binding.

Articles - 1bu1 mentioned but not cited (6)

  1. DARS-RNP and QUASI-RNP: new statistical potentials for protein-RNA docking. Tuszynska I, Bujnicki JM. BMC Bioinformatics 12 348 (2011)
  2. Sequence variations within protein families are linearly related to structural variations. Koehl P, Levitt M. J Mol Biol 323 551-562 (2002)
  3. Analysis of the impact of solvent on contacts prediction in proteins. Samsonov SA, Teyra J, Anders G, Pisabarro MT. BMC Struct Biol 9 22 (2009)
  4. Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix). Shi X, Betzi S, Lugari A, Opi S, Restouin A, Parrot I, Martinez J, Zimmermann P, Lecine P, Huang M, Arold ST, Collette Y, Morelli X. FEBS Lett 586 1759-1764 (2012)
  5. Aminoquinoline-Rhodium(II) Conjugates as Src-Family SH3 Ligands. Martin SC, Ball ZT. ACS Med Chem Lett 10 1380-1385 (2019)
  6. Synergy and allostery in ligand binding by HIV-1 Nef. Aldehaiman A, Momin AA, Restouin A, Wang L, Shi X, Aljedani S, Opi S, Lugari A, Shahul Hameed UF, Ponchon L, Morelli X, Huang M, Dumas C, Collette Y, Arold ST. Biochem J 478 1525-1545 (2021)


Reviews citing this publication (4)

  1. Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Roeth JF, Collins KL. Microbiol Mol Biol Rev 70 548-563 (2006)
  2. Searching for specificity in SH domains. Ladbury JE, Arold S. Chem Biol 7 R3-8 (2000)
  3. Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. Zafra-Ruano A, Luque I. FEBS Lett 586 2619-2630 (2012)
  4. Adaptability in protein structures: structural dynamics and implications in ligand design. Maity A, Majumdar S, Priya P, De P, Saha S, Ghosh Dastidar S. J Biomol Struct Dyn 33 298-321 (2015)

Articles citing this publication (67)

  1. Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM. Mol Cell 3 729-739 (1999)
  2. A structure-based benchmark for protein-protein binding affinity. Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA, Bonvin AM, Janin J. Protein Sci 20 482-491 (2011)
  3. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. Trible RP, Emert-Sedlak L, Smithgall TE. J Biol Chem 281 27029-27038 (2006)
  4. Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein. Arold ST, Baur AS. Trends Biochem Sci 26 356-363 (2001)
  5. Interaction between PAK and nck: a template for Nck targets and role of PAK autophosphorylation. Zhao ZS, Manser E, Lim L. Mol Cell Biol 20 3906-3917 (2000)
  6. Flexibility and conformational entropy in protein-protein binding. Grünberg R, Nilges M, Leckner J. Structure 14 683-693 (2006)
  7. Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. Kärkkäinen S, Hiipakka M, Wang JH, Kleino I, Vähä-Jaakkola M, Renkema GH, Liss M, Wagner R, Saksela K. EMBO Rep 7 186-191 (2006)
  8. The pathogenicity of human immunodeficiency virus (HIV) type 1 Nef in CD4C/HIV transgenic mice is abolished by mutation of its SH3-binding domain, and disease development is delayed in the absence of Hck. Hanna Z, Weng X, Kay DG, Poudrier J, Lowell C, Jolicoeur P. J Virol 75 9378-9392 (2001)
  9. Exogenous Nef protein activates NF-kappa B, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis. Varin A, Manna SK, Quivy V, Decrion AZ, Van Lint C, Herbein G, Aggarwal BB. J Biol Chem 278 2219-2227 (2003)
  10. Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression. Swigut T, Iafrate AJ, Muench J, Kirchhoff F, Skowronski J. J Virol 74 5691-5701 (2000)
  11. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B. Mol Biol Cell 11 3963-3976 (2000)
  12. The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. Barnett P, Bottger G, Klein AT, Tabak HF, Distel B. EMBO J 19 6382-6391 (2000)
  13. HIV-1 Nef dimerization is required for Nef-mediated receptor downregulation and viral replication. Poe JA, Smithgall TE. J Mol Biol 394 329-342 (2009)
  14. HIV-1 Nef promotes survival of myeloid cells by a Stat3-dependent pathway. Briggs SD, Scholtz B, Jacque JM, Swingler S, Stevenson M, Smithgall TE. J Biol Chem 276 25605-25611 (2001)
  15. Chemical library screens targeting an HIV-1 accessory factor/host cell kinase complex identify novel antiretroviral compounds. Emert-Sedlak L, Kodama T, Lerner EC, Dai W, Foster C, Day BW, Lazo JS, Smithgall TE. ACS Chem Biol 4 939-947 (2009)
  16. SH3 domains with high affinity and engineered ligand specificities targeted to HIV-1 Nef. Hiipakka M, Poikonen K, Saksela K. J Mol Biol 293 1097-1106 (1999)
  17. Characterization and molecular basis of the oligomeric structure of HIV-1 nef protein. Arold S, Hoh F, Domergue S, Birck C, Delsuc MA, Jullien M, Dumas C. Protein Sci 9 1137-1148 (2000)
  18. Gonadotropin-releasing hormone-induced activation of diacylglycerol kinase-zeta and its association with active c-src. Davidson L, Pawson AJ, López de Maturana R, Freestone SH, Barran P, Millar RP, Maudsley S. J Biol Chem 279 11906-11916 (2004)
  19. The intrinsically disordered cytoplasmic domain of the T cell receptor zeta chain binds to the nef protein of simian immunodeficiency virus without a disorder-to-order transition. Sigalov AB, Kim WM, Saline M, Stern LJ. Biochemistry 47 12942-12944 (2008)
  20. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner. McDonald CB, Seldeen KL, Deegan BJ, Farooq A. Biochemistry 48 4074-4085 (2009)
  21. Conserved residues in the HIV-1 Nef hydrophobic pocket are essential for recruitment and activation of the Hck tyrosine kinase. Choi HJ, Smithgall TE. J Mol Biol 343 1255-1268 (2004)
  22. Molecular design, functional characterization and structural basis of a protein inhibitor against the HIV-1 pathogenicity factor Nef. Breuer S, Schievink SI, Schulte A, Blankenfeldt W, Fackler OT, Geyer M. PLoS One 6 e20033 (2011)
  23. Conformation of the dileucine-based sorting motif in HIV-1 Nef revealed by intermolecular domain assembly. Horenkamp FA, Breuer S, Schulte A, Lülf S, Weyand M, Saksela K, Geyer M. Traffic 12 867-877 (2011)
  24. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. Engen JR, Wales TE, Chen S, Marzluff EM, Hassell KM, Weis DD, Smithgall TE. Int Rev Phys Chem 32 96-127 (2013)
  25. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. Stollar EJ, Garcia B, Chong PA, Rath A, Lin H, Forman-Kay JD, Davidson AR. J Biol Chem 284 26918-26927 (2009)
  26. Solution structure of a Hck SH3 domain ligand complex reveals novel interaction modes. Schmidt H, Hoffmann S, Tran T, Stoldt M, Stangler T, Wiesehan K, Willbold D. J Mol Biol 365 1517-1532 (2007)
  27. Crystallographic structure of the SH3 domain of the human c-Yes tyrosine kinase: loop flexibility and amyloid aggregation. Martín-García JM, Luque I, Mateo PL, Ruiz-Sanz J, Cámara-Artigas A. FEBS Lett 581 1701-1706 (2007)
  28. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Retrovirology 10 135 (2013)
  29. Nef-mediated enhancement of cellular activation and human immunodeficiency virus type 1 replication in primary T cells is dependent on association with p21-activated kinase 2. Olivieri KC, Mukerji J, Gabuzda D. Retrovirology 8 64 (2011)
  30. Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl. Palencia A, Camara-Artigas A, Pisabarro MT, Martinez JC, Luque I. J Biol Chem 285 2823-2833 (2010)
  31. Structural basis for complex formation between human IRSp53 and the translocated intimin receptor Tir of enterohemorrhagic E. coli. de Groot JC, Schlüter K, Carius Y, Quedenau C, Vingadassalom D, Faix J, Weiss SM, Reichelt J, Standfuss-Gabisch C, Lesser CF, Leong JM, Heinz DW, Büssow K, Stradal TE. Structure 19 1294-1306 (2011)
  32. Evidence for adaptive evolution at the divergence between lymphoid and brain HIV-1 nef genes. Olivieri KC, Agopian KA, Mukerji J, Gabuzda D. AIDS Res Hum Retroviruses 26 495-500 (2010)
  33. Dynamics of the Hck-SH3 domain: comparison of experiment with multiple molecular dynamics simulations. Horita DA, Zhang W, Smithgall TE, Gmeiner WH, Byrd RA. Protein Sci 9 95-103 (2000)
  34. Dys-regulated activation of a Src tyroine kinase Hck at the Golgi disturbs N-glycosylation of a cytokine receptor Fms. Hassan R, Suzu S, Hiyoshi M, Takahashi-Makise N, Ueno T, Agatsuma T, Akari H, Komano J, Takebe Y, Motoyoshi K, Okada S. J Cell Physiol 221 458-468 (2009)
  35. Interfacial water molecules in SH3 interactions: a revised paradigm for polyproline recognition. Martin-Garcia JM, Ruiz-Sanz J, Luque I. Biochem J 442 443-451 (2012)
  36. Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix. Kuo LS, Baugh LL, Denial SJ, Watkins RL, Liu M, Garcia JV, Foster JL. Retrovirology 9 47 (2012)
  37. The C-terminus of glutathione S-transferase A1-1 is required for entropically-driven ligand binding. Nieslanik BS, Ibarra C, Atkins WM. Biochemistry 40 3536-3543 (2001)
  38. The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: understanding the determinants of binding affinity by comparison with Abl-SH3. Casares S, Ab E, Eshuis H, Lopez-Mayorga O, van Nuland NA, Conejero-Lara F. BMC Struct Biol 7 22 (2007)
  39. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. Pene-Dumitrescu T, Shu ST, Wales TE, Alvarado JJ, Shi H, Narute P, Moroco JA, Yeh JI, Engen JR, Smithgall TE. BMC Chem Biol 12 1 (2012)
  40. Rapid Quantification of Protein-Ligand Binding via 19F NMR Lineshape Analysis. Stadmiller SS, Aguilar JS, Waudby CA, Pielak GJ. Biophys J 118 2537-2548 (2020)
  41. The promiscuous binding of the Fyn SH3 domain to a peptide from the NS5A protein. Martin-Garcia JM, Luque I, Ruiz-Sanz J, Camara-Artigas A. Acta Crystallogr D Biol Crystallogr 68 1030-1040 (2012)
  42. Competitive displacement of full-length HIV-1 Nef from the Hck SH3 domain by a high-affinity artificial peptide. Stangler T, Tran T, Hoffmann S, Schmidt H, Jonas E, Willbold D. Biol Chem 388 611-615 (2007)
  43. Versatile retargeting of SH3 domain binding by modification of non-conserved loop residues. Hiipakka M, Saksela K. FEBS Lett 581 1735-1741 (2007)
  44. The SH3 domain of Src can downregulate its kinase activity in the absence of the SH2 domain-pY527 interaction. Brábek J, Mojzita D, Novotný M, Půta F, Folk P. Biochem Biophys Res Commun 296 664-670 (2002)
  45. A proline to glycine mutation in the Lck SH3-domain affects conformational sampling and increases ligand binding affinity. Bauer F, Sticht H. FEBS Lett 581 1555-1560 (2007)
  46. Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain. Casares S, López-Mayorga O, Vega MC, Cámara-Artigas A, Conejero-Lara F. Proteins 67 531-547 (2007)
  47. Site-specific 2D IR spectroscopy: a general approach for the characterization of protein dynamics with high spatial and temporal resolution. Ramos S, Horness RE, Collins JA, Haak D, Thielges MC. Phys Chem Chem Phys 21 780-788 (2019)
  48. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A. Protein Sci 15 795-807 (2006)
  49. Site-selective Characterization of Src Homology 3 Domain Molecular Recognition with Cyanophenylalanine Infrared Probes. Horness RE, Basom EJ, Thielges MC. Anal Methods 7 7234-7241 (2015)
  50. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein. Candel AM, van Nuland NA, Martin-Sierra FM, Martinez JC, Conejero-Lara F. J Mol Biol 377 117-135 (2008)
  51. Binding site plasticity in viral PPxY Late domain recognition by the third WW domain of human NEDD4. Iglesias-Bexiga M, Palencia A, Corbi-Verge C, Martin-Malpartida P, Blanco FJ, Macias MJ, Cobos ES, Luque I. Sci Rep 9 15076 (2019)
  52. Large-Scale Screening of Preferred Interactions of Human Src Homology-3 (SH3) Domains Using Native Target Proteins as Affinity Ligands. Kazlauskas A, Schmotz C, Kesti T, Hepojoki J, Kleino I, Kaneko T, Li SS, Saksela K. Mol Cell Proteomics 15 3270-3281 (2016)
  53. Competitively selected protein ligands pay their increase in specificity by a decrease in affinity. Hoffmann S, Funke SA, Wiesehan K, Moedder S, Glück JM, Feuerstein S, Gerdts M, Mötter J, Willbold D. Mol Biosyst 6 126-133 (2010)
  54. Folding of the alphaII-spectrin SH3 domain under physiological salt conditions. Petzold K, Ohman A, Backman L. Arch Biochem Biophys 474 39-47 (2008)
  55. On chip electrochemical detection of sarcoma protein kinase and HIV-1 reverse transcriptase. Martić S, Labib M, Kraatz HB. Talanta 85 2430-2436 (2011)
  56. A Quantitative Tri-fluorescent Yeast Two-hybrid System: From Flow Cytometry to In cellula Affinities. Cluet D, Amri I, Vergier B, Léault J, Audibert A, Grosjean C, Calabrési D, Spichty M. Mol Cell Proteomics 19 701-715 (2020)
  57. Characterization of intramolecular interactions of HIV-1 accessory protein Nef by differential scanning calorimetry. Groesch TD, Freire E. Biophys Chem 126 36-42 (2007)
  58. Conserved patterns and interactions in the unfolding transition state across SH3 domain structural homologues. Demakis C, Childers MC, Daggett V. Protein Sci 30 391-407 (2021)
  59. HIV-1 infection of T cells and macrophages are differentially modulated by virion-associated Hck: a Nef-dependent phenomenon. Cornall A, Mak J, Greenway A, Tachedjian G. Viruses 5 2235-2252 (2013)
  60. Interaction with simian Hck tyrosine kinase reveals convergent evolution of the Nef protein from simian and human immunodeficiency viruses despite differential molecular surface usage. Picard C, Greenway A, Holloway G, Olive D, Collette Y. Virology 295 320-327 (2002)
  61. Mapping the binding site of full length HIV-1 Nef on human Lck SH3 by NMR spectroscopy. Briese L, Preusser A, Willbold D. J Biomed Sci 12 451-456 (2005)
  62. Molecular and structural characterization of the SH3 domain of AHI-1 in regulation of cellular resistance of BCR-ABL(+) chronic myeloid leukemia cells to tyrosine kinase inhibitors. Liu X, Chen M, Lobo P, An J, Grace Cheng SW, Moradian A, Morin GB, Van Petegem F, Jiang X. Proteomics 12 2094-2106 (2012)
  63. A Biochemical/Biophysical Assay Dyad for HTS-Compatible Triaging of Inhibitors of the HIV-1 Nef/Hck SH3 Interaction. Breuer S, Espinola S, Morelli X, Torbett BE, Arold ST, Engels IH. Curr Chem Genom Transl Med 7 16-20 (2013)
  64. Crystal structure of the SH3 domain of human Lyn non-receptor tyrosine kinase. Berndt S, Gurevich VV, Iverson TM. PLoS One 14 e0215140 (2019)
  65. Structural studies and SH3 domain binding properties of a human antiviral salivary proline-rich peptide. Righino B, Pirolli D, Radicioni G, Marzano V, Longhi R, Arcovito A, Sanna MT, De Rosa MC, Paoluzi S, Cesareni G, Messana I, Castagnola M, Vitali A. Biopolymers 106 714-725 (2016)
  66. The impact of oncogenic mutations of the viral Src kinase on the structure and stability of the SH3 domain. Salinas-Garcia MC, Plaza-Garrido M, Camara-Artigas A. Acta Crystallogr D Struct Biol 77 854-866 (2021)
  67. Cold spots are universal in protein-protein interactions. Gurusinghe SNS, Oppenheimer B, Shifman JM. Protein Sci 31 e4435 (2022)