1bhg Citations

Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs.

Nat Struct Biol 3 375-81 (1996)
Cited: 112 times
EuropePMC logo PMID: 8599764

Abstract

The X-ray structure of the homotetrameric lysosomal acid hydrolase, human beta-glucuronidase (332,000 Mr), has been determined at 2.6 A resolution. The tetramer has approximate dihedral symmetry and each promoter consists of three structural domains with topologies similar to a jelly roll barrel, an immunoglobulin constant domain and a TIM barrel respectively. Residues 179-204 form a beta-hairpin motif similar to the putative lysosomal targeting motif of cathepsin D, supporting the view that lysosomal targeting has a structural basis. The active site of the enzyme is formed from a large cleft at the interface of two monomers. Residues Glu 451 and Glu 540 are proposed to be important for catalysis. The structure establishes a framework for understanding mutations that lead to the human genetic disease mucopolysaccharidosis VII, and for using the enzyme in anti-cancer therapy.

Articles - 1bhg mentioned but not cited (14)

  1. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S, Redinbo MR. Science 330 831-835 (2010)
  2. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. Layer G, Moser J, Heinz DW, Jahn D, Schubert WD. EMBO J. 22 6214-6224 (2003)
  3. Spectrum of disease-causing mutations in protein secondary structures. Khan S, Vihinen M. BMC Struct Biol 7 56 (2007)
  4. Molecular mechanisms of yeast cell wall glucan remodeling. Hurtado-Guerrero R, Schüttelkopf AW, Mouyna I, Ibrahim AF, Shepherd S, Fontaine T, Latgé JP, van Aalten DM. J. Biol. Chem. 284 8461-8469 (2009)
  5. Three-dimensional structure of (1,4)-beta-D-mannan mannanohydrolase from tomato fruit. Bourgault R, Oakley AJ, Bewley JD, Wilce MC. Protein Sci 14 1233-1241 (2005)
  6. Letter Protein Destabilization as a Common Factor in Diverse Inherited Disorders. Redler RL, Das J, Diaz JR, Dokholyan NV. J Mol Evol 82 11-16 (2016)
  7. Two exo-beta-D-glucosaminidases/exochitosanases from actinomycetes define a new subfamily within family 2 of glycoside hydrolases. Côté N, Fleury A, Dumont-Blanchette E, Fukamizo T, Mitsutomi M, Brzezinski R. Biochem. J. 394 675-686 (2006)
  8. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting. Hassan MI, Waheed A, Grubb JH, Klei HE, Korolev S, Sly WS. PLoS ONE 8 e79687 (2013)
  9. Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes. Sarrazin S, Wilson B, Sly WS, Tor Y, Esko JD. Mol. Ther. 18 1268-1274 (2010)
  10. Crystallization and preliminary X-ray study of native and selenomethionyl beta-1,4-mannanase AaManA from Alicyclobacillus acidocaldariusTc-12-31. Zhang Y, Gao F, Xue Y, Zeng Y, Peng H, Qi J, Ma Y. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 209-212 (2008)
  11. Functional insight for beta-glucuronidase in Escherichia coli and Staphylococcus sp. RLH1. Arul L, Benita G, Balasubramanian P. Bioinformation 2 339-343 (2008)
  12. Discovery of specific inhibitors for intestinal E. coli  β-glucuronidase through in silico virtual screening. Cheng TC, Chuang KH, Roffler SR, Cheng KW, Leu YL, Chuang CH, Huang CC, Kao CH, Hsieh YC, Chang LS, Cheng TL, Chen CS. ScientificWorldJournal 2015 740815 (2015)
  13. VaProS: a database-integration approach for protein/genome information retrieval. Gojobori T, Ikeo K, Katayama Y, Kawabata T, Kinjo AR, Kinoshita K, Kwon Y, Migita O, Mizutani H, Muraoka M, Nagata K, Omori S, Sugawara H, Yamada D, Yura K. J. Struct. Funct. Genomics 17 69-81 (2016)
  14. Synthesis of Chromen-4-One-Oxadiazole Substituted Analogs as Potent β-Glucuronidase Inhibitors. Taha M, Rahim F, Ali M, Khan MN, Alqahtani MA, Bamarouf YA, Gollapalli M, Farooq RK, Shah SAA, Ahmed QU, Zakaria ZA. Molecules 24 (2019)


Reviews citing this publication (12)

  1. Structural and sequence-based classification of glycoside hydrolases. Henrissat B, Davies G. Curr. Opin. Struct. Biol. 7 637-644 (1997)
  2. The role of beta-glucuronidase in drug disposition and drug targeting in humans. Sperker B, Backman JT, Kroemer HK. Clin Pharmacokinet 33 18-31 (1997)
  3. Structural trees for protein superfamilies. Efimov AV. Proteins 28 241-260 (1997)
  4. Mutations and polymorphisms in GUSB gene in mucopolysaccharidosis VII (Sly Syndrome). Tomatsu S, Montaño AM, Dung VC, Grubb JH, Sly WS. Hum. Mutat. 30 511-519 (2009)
  5. Glucuronides in the gut: Sugar-driven symbioses between microbe and host. Pellock SJ, Redinbo MR. J. Biol. Chem. 292 8569-8576 (2017)
  6. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy. Naz H, Islam A, Waheed A, Sly WS, Ahmad F, Hassan I. Rejuvenation Res 16 352-363 (2013)
  7. Uronic polysaccharide degrading enzymes. Garron ML, Cygler M. Curr. Opin. Struct. Biol. 28 87-95 (2014)
  8. Insight into microbial mannosidases: a review. Chauhan PS, Gupta N. Crit. Rev. Biotechnol. 37 190-201 (2017)
  9. The Role of Gut Microbial β-Glucuronidase in Estrogen Reactivation and Breast Cancer. Sui Y, Wu J, Chen J. Front Cell Dev Biol 9 631552 (2021)
  10. A New Paradigm in the Relationship between Gut Microbiota and Breast Cancer: β-glucuronidase Enzyme Identified as Potential Therapeutic Target. Fernández-Murga ML, Gil-Ortiz F, Serrano-García L, Llombart-Cussac A. Pathogens 12 1086 (2023)
  11. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Eur J Med Chem 187 111921 (2020)
  12. [Glucuronyl paclitaxel (Taxol) derivatives as tumor activated prodrugs]. Bouvier E, Schmidt F, Monneret C. Ann Pharm Fr 63 53-62 (2005)

Articles citing this publication (86)

  1. Structure of a human lysosomal sulfatase. Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM. Structure 5 277-289 (1997)
  2. Crystal structure of hyaluronidase, a major allergen of bee venom. Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, Schirmer T. Structure 8 1025-1035 (2000)
  3. The generation of new protein functions by the combination of domains. Bashton M, Chothia C. Structure 15 85-99 (2007)
  4. The geometry of domain combination in proteins. Bashton M, Chothia C. J. Mol. Biol. 315 927-939 (2002)
  5. Enzyme replacement therapy for murine mucopolysaccharidosis type VII leads to improvements in behavior and auditory function. O'Connor LH, Erway LC, Vogler CA, Sly WS, Nicholes A, Grubb J, Holmberg SW, Levy B, Sands MS. J. Clin. Invest. 101 1394-1400 (1998)
  6. Molecular basis of lysosomal enzyme recognition: three-dimensional structure of the cation-dependent mannose 6-phosphate receptor. Roberts DL, Weix DJ, Dahms NM, Kim JJ. Cell 93 639-648 (1998)
  7. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, Venkatesh MK, Guthrie L, O'Neal SK, Robinson SJ, Dollinger M, Figueroa E, McShane SR, Cohen RD, Jin J, Frye SV, Zamboni WC, Pepe-Ranney C, Mani S, Kelly L, Redinbo MR. Chem. Biol. 22 1238-1249 (2015)
  8. Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase. Matsumura I, Wallingford JB, Surana NK, Vize PD, Ellington AD. Nat Biotechnol 17 696-701 (1999)
  9. Rapid evolution of beta-glucuronidase specificity by saturation mutagenesis of an active site loop. Geddie ML, Matsumura I. J. Biol. Chem. 279 26462-26468 (2004)
  10. A comparison of directed evolution approaches using the beta-glucuronidase model system. Rowe LA, Geddie ML, Alexander OB, Matsumura I. J. Mol. Biol. 332 851-860 (2003)
  11. Three-dimensional crystal structure and enzymic characterization of beta-mannanase Man5A from blue mussel Mytilus edulis. Larsson AM, Anderson L, Xu B, Muñoz IG, Usón I, Janson JC, Stålbrand H, Ståhlberg J. J. Mol. Biol. 357 1500-1510 (2006)
  12. Secreted human beta-glucuronidase: a novel tool for gene-directed enzyme prodrug therapy. Weyel D, Sedlacek HH, Müller R, Brüsselbach S. Gene Ther. 7 224-231 (2000)
  13. Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the beta-mannosidase, BtMan2A. Tailford LE, Money VA, Smith NL, Dumon C, Davies GJ, Gilbert HJ. J Biol Chem 282 11291-11299 (2007)
  14. Structural comparisons of TIM barrel proteins suggest functional and evolutionary relationships between beta-galactosidase and other glycohydrolases. Juers DH, Huber RE, Matthews BW. Protein Sci. 8 122-136 (1999)
  15. Cloning and characterization of Aspergillus niger genes encoding an alpha-galactosidase and a beta-mannosidase involved in galactomannan degradation. Ademark P, de Vries RP, Hägglund P, Stålbrand H, Visser J. Eur. J. Biochem. 268 2982-2990 (2001)
  16. In vivo contextual requirements for UAG translation as pyrrolysine. Longstaff DG, Blight SK, Zhang L, Green-Church KB, Krzycki JA. Mol. Microbiol. 63 229-241 (2007)
  17. The 1.62 A structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. Lo Leggio L, Larsen S. FEBS Lett. 523 103-108 (2002)
  18. Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity. Roberts AB, Wallace BD, Venkatesh MK, Mani S, Redinbo MR. Mol. Pharmacol. 84 208-217 (2013)
  19. Synthesis of novel inhibitors of β-glucuronidase based on benzothiazole skeleton and study of their binding affinity by molecular docking. Khan KM, Rahim F, Halim SA, Taha M, Khan M, Perveen S, Zaheer-Ul-Haq, Mesaik MA, Iqbal Choudhary M. Bioorg. Med. Chem. 19 4286-4294 (2011)
  20. Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-D-glucuronidase (heparanase). Gandhi NS, Freeman C, Parish CR, Mancera RL. Glycobiology 22 35-55 (2012)
  21. Membrane-localized activation of glucuronide prodrugs by beta-glucuronidase enzymes. Chen KC, Cheng TL, Leu YL, Prijovich ZM, Chuang CH, Chen BM, Roffler SR. Cancer Gene Ther. 14 187-200 (2007)
  22. Several cooperating binding sites mediate the interaction of a lysosomal enzyme with phosphotransferase. Tikkanen R, Peltola M, Oinonen C, Rouvinen J, Peltonen L. EMBO J. 16 6684-6693 (1997)
  23. Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Potot S, Serra CR, Henriques AO, Schyns G. Appl. Environ. Microbiol. 76 5926-5933 (2010)
  24. Large scale analysis of the mutational landscape in β-glucuronidase: A major player of mucopolysaccharidosis type VII. Khan FI, Shahbaaz M, Bisetty K, Waheed A, Sly WS, Ahmad F, Hassan MI. Gene 576 36-44 (2016)
  25. Directed evolution of a lysosomal enzyme with enhanced activity at neutral pH by mammalian cell-surface display. Chen KC, Wu CH, Chang CY, Lu WC, Tseng Q, Prijovich ZM, Schechinger W, Liaw YC, Leu YL, Roffler SR. Chem. Biol. 15 1277-1286 (2008)
  26. Evaluation of bisindole as potent β-glucuronidase inhibitors: synthesis and in silico based studies. Khan KM, Rahim F, Wadood A, Taha M, Khan M, Naureen S, Ambreen N, Hussain S, Perveen S, Choudhary MI. Bioorg. Med. Chem. Lett. 24 1825-1829 (2014)
  27. Development and application of novel constructs to score C:G-to-T:A transitions and homologous recombination in Arabidopsis. Van der Auwera G, Baute J, Bauwens M, Peck I, Piette D, Pycke M, Asselman P, Depicker A. Plant Physiol. 146 22-31 (2008)
  28. Mechanical stability of multidomain proteins and novel mechanical clamps. Sikora M, Cieplak M. Proteins 79 1786-1799 (2011)
  29. Structural and biochemical characterization of glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum. Michikawa M, Ichinose H, Momma M, Biely P, Jongkees S, Yoshida M, Kotake T, Tsumuraya Y, Withers SG, Fujimoto Z, Kaneko S. J. Biol. Chem. 287 14069-14077 (2012)
  30. Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability. Xiong AS, Peng RH, Cheng ZM, Li Y, Liu JG, Zhuang J, Gao F, Xu F, Qiao YS, Zhang Z, Chen JM, Yao QH. Protein Eng. Des. Sel. 20 319-325 (2007)
  31. Cloning and characterization of Thermotoga maritima beta-glucuronidase. Salleh HM, Müllegger J, Reid SP, Chan WY, Hwang J, Warren RA, Withers SG. Carbohydr. Res. 341 49-59 (2006)
  32. Prodrug Mono Therapy: synthesis and biological evaluation of an etoposide glucuronide-prodrug. Schmidt F, Monneret C. Bioorg. Med. Chem. 11 2277-2283 (2003)
  33. Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors. Khan KM, Ambreen N, Taha M, Halim SA, Zaheer-ul-Haq, Naureen S, Rasheed S, Perveen S, Ali S, Choudhary MI. J. Comput. Aided Mol. Des. 28 577-585 (2014)
  34. The structural basis of substrate recognition in an exo-beta-D-glucosaminidase involved in chitosan hydrolysis. van Bueren AL, Ghinet MG, Gregg K, Fleury A, Brzezinski R, Boraston AB. J. Mol. Biol. 385 131-139 (2009)
  35. Activity-based probes for functional interrogation of retaining β-glucuronidases. Wu L, Jiang J, Jin Y, Kallemeijn WW, Kuo CL, Artola M, Dai W, van Elk C, van Eijk M, van der Marel GA, Codée JDC, Florea BI, Aerts JMFG, Overkleeft HS, Davies GJ. Nat. Chem. Biol. 13 867-873 (2017)
  36. Kinetic analysis of β-galactosidase and β-glucuronidase tetramerization coupled with protein translation. Matsuura T, Hosoda K, Ichihashi N, Kazuta Y, Yomo T. J. Biol. Chem. 286 22028-22034 (2011)
  37. Production of MPS VII mouse (Gus(tm(hE540A x mE536A)Sly)) doubly tolerant to human and mouse beta-glucuronidase. Tomatsu S, Orii KO, Vogler C, Grubb JH, Snella EM, Gutierrez M, Dieter T, Holden CC, Sukegawa K, Orii T, Kondo N, Sly WS. Hum. Mol. Genet. 12 961-973 (2003)
  38. Synthesis of benzimidazole derivatives as potent β-glucuronidase inhibitors. Taha M, Ismail NH, Imran S, Selvaraj M, Rashwan H, Farhanah FU, Rahim F, Kesavanarayanan KS, Ali M. Bioorg. Chem. 61 36-44 (2015)
  39. Transglycosylating and hydrolytic activities of the beta-mannosidase from Trichoderma reesei. Eneyskaya EV, Sundqvist G, Golubev AM, Ibatullin FM, Ivanen DR, Shabalin KA, Brumer H, Kulminskaya AA. Biochimie 91 632-638 (2009)
  40. Crystal structures of sialyltransferase from Photobacterium damselae. Huynh N, Li Y, Yu H, Huang S, Lau K, Chen X, Fisher AJ. FEBS Lett. 588 4720-4729 (2014)
  41. Identification of Glu-519 as the catalytic nucleophile in beta-mannosidase 2A from Cellulomonas fimi. Stoll D, He S, Withers SG, Warren RA. Biochem. J. 351 Pt 3 833-838 (2000)
  42. A novel GUSB mutation in Brazilian terriers with severe skeletal abnormalities defines the disease as mucopolysaccharidosis VII. Hytönen MK, Arumilli M, Lappalainen AK, Kallio H, Snellman M, Sainio K, Lohi H. PLoS ONE 7 e40281 (2012)
  43. Cloning and heterologous expression of the exo-beta-D-glucosaminidase-encoding gene (gls93) from a filamentous fungus, Trichoderma reesei PC-3-7. Ike M, Isami K, Tanabe Y, Nogawa M, Ogasawara W, Okada H, Morikawa Y. Appl. Microbiol. Biotechnol. 72 687-695 (2006)
  44. Epidemiology of mucopolysaccharidoses. Khan SA, Peracha H, Ballhausen D, Wiesbauer A, Rohrbach M, Gautschi M, Mason RW, Giugliani R, Suzuki Y, Orii KE, Orii T, Tomatsu S. Mol. Genet. Metab. 121 227-240 (2017)
  45. Missense models [Gustm(E536A)Sly, Gustm(E536Q)Sly, and Gustm(L175F)Sly] of murine mucopolysaccharidosis type VII produced by targeted mutagenesis. Tomatsu S, Orii KO, Vogler C, Grubb JH, Snella EM, Gutierrez MA, Dieter T, Sukegawa K, Orii T, Kondo N, Sly WS. Proc. Natl. Acad. Sci. U.S.A. 99 14982-14987 (2002)
  46. ECSTASY, an adjustable membrane-tethered/soluble protein expression system for the directed evolution of mammalian proteins. Chen CP, Hsieh YT, Prijovich ZM, Chuang HY, Chen KC, Lu WC, Tseng Q, Leu YL, Cheng TL, Roffler SR. Protein Eng. Des. Sel. 25 367-375 (2012)
  47. Identification and functional analysis of genetic variants of the human beta-glucuronidase in a German population sample. Gratz M, Kunert-Keil C, John U, Cascorbi I, Kroemer HK. Pharmacogenet. Genomics 15 875-881 (2005)
  48. Applying neutral drift to the directed molecular evolution of a β-glucuronidase into a β-galactosidase: Two different evolutionary pathways lead to the same variant. Smith WS, Hale JR, Neylon C. BMC Res Notes 4 138 (2011)
  49. Antibody-induced oligomerization and activation of an engineered reporter enzyme. Geddie ML, Matsumura I. J. Mol. Biol. 369 1052-1059 (2007)
  50. Involvement of AP-2 binding sites in regulation of human beta-glucuronidase. Kunert-Keil C, Sperker B, Bien S, Wolf G, Grube M, Kroemer HK. Naunyn Schmiedebergs Arch. Pharmacol. 370 331-339 (2004)
  51. Biology-oriented drug synthesis (BIODS): In vitro β-glucuronidase inhibitory and in silico studies on 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl carboxylate derivatives. Salar U, Khan KM, Taha M, Ismail NH, Ali B, Qurat-Ul-Ain, Perveen S, Ghufran M, Wadood A. Eur J Med Chem 125 1289-1299 (2017)
  52. Effects of a non-conservative sequence on the properties of β-glucuronidase from Aspergillus terreus Li-20. Liu Y, Huangfu J, Qi F, Kaleem I, E W, Li C. PLoS ONE 7 e30998 (2012)
  53. Inhibition of the exo-beta-D-glucosaminidase CsxA by a glucosamine-configured castanospermine and an amino-australine analogue. Pluvinage B, Ghinet MG, Brzezinski R, Boraston AB, Stubbs KA. Org. Biomol. Chem. 7 4169-4172 (2009)
  54. Structure-guided engineering of the substrate specificity of a fungal β-glucuronidase toward triterpenoid saponins. Lv B, Sun H, Huang S, Feng X, Jiang T, Li C. J. Biol. Chem. 293 433-443 (2018)
  55. Continuous fluorometric method for measuring β-glucuronidase activity: comparative analysis of three fluorogenic substrates. Briciu-Burghina C, Heery B, Regan F. Analyst 140 5953-5964 (2015)
  56. Expression and purification of Escherichia coli beta-glucuronidase. Aich S, Delbaere LT, Chen R. Protein Expr. Purif. 22 75-81 (2001)
  57. Mechanism-based heparanase inhibitors reduce cancer metastasis in vivo. de Boer C, Armstrong Z, Lit VAJ, Barash U, Ruijgrok G, Boyango I, Weitzenberg MM, Schröder SP, Sarris AJC, Meeuwenoord NJ, Bule P, Kayal Y, Ilan N, Codée JDC, Vlodavsky I, Overkleeft HS, Davies GJ, Wu L. Proc Natl Acad Sci U S A 119 e2203167119 (2022)
  58. Synthesis of indole analogs as potent β-glucuronidase inhibitors. Baharudin MS, Taha M, Imran S, Ismail NH, Rahim F, Javid MT, Khan KM, Ali M. Bioorg. Chem. 72 323-332 (2017)
  59. Toward reducing immunogenicity of enzyme replacement therapy: altering the specificity of human β-glucuronidase to compensate for α-iduronidase deficiency. Chuang HY, Suen CS, Hwang MJ, Roffler SR. Protein Eng. Des. Sel. 28 519-529 (2015)
  60. 2-Nitro and 4-nitro-quinone-methides are not irreversible inhibitors of bovine beta-glucuronidase. Azoulay M, Chalard F, Gesson JP, Florent JC, Monneret C. Carbohydr. Res. 332 151-156 (2001)
  61. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2). Talens-Perales D, Górska A, Huson DH, Polaina J, Marín-Navarro J. PLoS ONE 11 e0168035 (2016)
  62. Beta-glucuronidase of family-2 glycosyl hydrolase: a missing member in plants. Arul L, Benita G, Sudhakar D, Thayumanavan B, Balasubramanian P. Bioinformation 3 194-197 (2008)
  63. Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant. Feng X, Tang H, Han B, Zhang L, Lv B, Li C. Appl. Microbiol. Biotechnol. 100 9955-9966 (2016)
  64. Inhibitory Activity of Bioactive Phloroglucinols from the Rhizomes of Dryopteris crassirhizoma on Escherichia coli β-Glucuronidase: Kinetic Analysis and Molecular Docking Studies Phong NV, Zhao Y, Min BS, Yang SY, Kim JA. Metabolites 12 938 (2022)
  65. Monitoring glycosidase activity for clustered sugar substrates, a study on β-glucuronidase. Brissonnet Y, Compain G, Renoux B, Krammer EM, Daligault F, Deniaud D, Papot S, Gouin SG. RSC Adv 9 40263-40267 (2019)
  66. Optimal allosteric stabilization sites using contact stabilization analysis. Dickson A, Bailey CT, Karanicolas J. J Comput Chem 38 1138-1146 (2017)
  67. Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. Chen C, Chen J, Geng Z, Wang M, Liu N, Li D. Biotechnol Biofuels 11 155 (2018)
  68. Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β-glucuronidase inhibitors. Taha M, Baharudin MS, Ismail NH, Selvaraj M, Salar U, Alkadi KA, Khan KM. Bioorg. Chem. 71 86-96 (2017)
  69. Synthesis, in vitro β-glucuronidase inhibitory activity and in silico studies of novel (E)-4-Aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazoles. Salar U, Khan KM, Syed S, Taha M, Ali F, Ismail NH, Perveen S, Wadood A, Ghufran M. Bioorg. Chem. 70 199-209 (2017)
  70. Synthesis, β-glucuronidase inhibition and molecular docking studies of cyano-substituted bisindole hydrazone hybrids. Abid O, Imran S, Taha M, Ismail NH, Jamil W, Kashif SM, Khan KM, Yusoff J. Mol Divers 25 995-1009 (2021)
  71. Three structurally and functionally distinct β-glucuronidases from the human gut microbe Bacteroides uniformis. Pellock SJ, Walton WG, Biernat KA, Torres-Rivera D, Creekmore BC, Xu Y, Liu J, Tripathy A, Stewart LJ, Redinbo MR. J. Biol. Chem. 293 18559-18573 (2018)
  72. Verapamil regulates activity and mRNA-expression of human beta-glucuronidase in HepG2 cells. Grube M, Kunert-Keil C, Sperker B, Kroemer HK. Naunyn Schmiedebergs Arch. Pharmacol. 368 463-469 (2003)
  73. Case Reports A de novo homozygous missense mutation of the GUSB gene leads to mucopolysaccharidosis type VII identification in a family with twice adverse pregnancy outcomes due to non-immune hydrops fetalis. Du R, Tian H, Zhao B, Shi X, Sun Y, Qiu B, Li Y. Mol Genet Metab Rep 38 101033 (2024)
  74. A Doxorubicin-Glucuronide Prodrug Released from Nanogels Activated by High-Intensity Focused Ultrasound Liberated β-Glucuronidase. Besse HC, Chen Y, Scheeren HW, Metselaar JM, Lammers T, Moonen CTW, Hennink WE, Deckers R. Pharmaceutics 12 (2020)
  75. Functional Differences in the Blooming Phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense Revealed by Comparative Metaproteomics. Zhang H, He YB, Wu PF, Zhang SF, Xie ZX, Li DX, Lin L, Chen F, Wang DZ. Appl Environ Microbiol 85 (2019)
  76. Indole bearing thiadiazole analogs: synthesis, β-glucuronidase inhibition and molecular docking study. Almandil NB, Taha M, Gollapalli M, Rahim F, Ibrahim M, Mosaddik A, Anouar EH. BMC Chem 13 14 (2019)
  77. Native Electrophoresis-Coupled Activity Assays Reveal Catalytically-Active Protein Aggregates of Escherichia coli β-Glucuronidase. Burchett GG, Folsom CG, Lane KT. PLoS ONE 10 e0130269 (2015)
  78. Noncompetitive homogeneous immunodetection of small molecules based on beta-glucuronidase complementation. Su J, Dong J, Kitaguchi T, Ohmuro-Matsuyama Y, Ueda H. Analyst 143 2096-2101 (2018)
  79. Novel carbohydrate-binding activity of bovine liver beta-glucuronidase toward lactose/N-acetyllactosamine sequences. Matsushita-Oikawa H, Komatsu M, Iida-Tanaka N, Sakagami H, Kanamori T, Matsumoto I, Seno N, Ogawa H. Glycobiology 16 891-901 (2006)
  80. Oral manifestations in patients and dogs with mucopolysaccharidosis Type VII. Kantaputra PN, Smith LJ, Casal ML, Kuptanon C, Chang YC, Nampoothiri S, Paiyarom A, Veerasakulwong T, Trachoo O, Ketudat Cairns JR, Chinadet W, Tanpaiboon P. Am J Med Genet A 179 486-493 (2019)
  81. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. Chen J, Guo X, Zhu M, Chen C, Li D. Biotechnol Biofuels 12 42 (2019)
  82. Structural and Biochemical Basis of a Marine Bacterial Glycoside Hydrolase Family 2 β-Glycosidase with Broad Substrate Specificity. Yang J, Li S, Liu Y, Li R, Long L. Appl Environ Microbiol 88 e0222621 (2022)
  83. Synthesis, Molecular Docking and β-Glucuronidase Inhibitory Potential of Indole Base Oxadiazole Derivatives. Anouar EH, Moustapha ME, Taha M, Geesi MH, Farag ZR, Rahim F, Almandil NB, Farooq RK, Nawaz M, Mosaddik A. Molecules 24 (2019)
  84. Synthesis, in vitro β-glucuronidase inhibitory potential and molecular docking studies of quinolines. Bano B, Arshia, Khan KM, Kanwal, Fatima B, Taha M, Ismail NH, Wadood A, Ghufran M, Perveen S. Eur J Med Chem 139 849-864 (2017)
  85. Transmembrane signaling on a protocell: Creation of receptor-enzyme chimeras for immunodetection of specific antibodies and antigens. Su J, Kitaguchi T, Ohmuro-Matsuyama Y, Seah T, Ghadessy FJ, Hoon S, Ueda H. Sci Rep 9 18189 (2019)
  86. β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Dashnyam P, Mudududdla R, Hsieh TJ, Lin TC, Lin HY, Chen PY, Hsu CY, Lin CH. Sci Rep 8 16372 (2018)


Related citations provided by authors (1)

  1. Crystallization and preliminary crystallographic studies of human beta-glucuronidase.. Drendel WB, Grubb JH, Sly WS, Chen Z, Mathews FS, Jain S J Mol Biol 233 173-6 (1993)