1b8r Citations

Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin.

Structure 7 1269-78 (1999)
Related entries: 1b8c, 1b8l, 1b9a

Cited: 56 times
EuropePMC logo PMID: 10545326

Abstract

Background

The EF-hand family is a large set of Ca(2+)-binding proteins that contain characteristic helix-loop-helix binding motifs that are highly conserved in sequence. Members of this family include parvalbumin and many prominent regulatory proteins such as calmodulin and troponin C. EF-hand proteins are involved in a variety of physiological processes including cell-cycle regulation, second messenger production, muscle contraction, microtubule organization and vision.

Results

We have determined the structures of parvalbumin mutants designed to explore the role of the last coordinating residue of the Ca(2+)-binding loop. An E101D substitution has been made in the parvalbumin EF site. The substitution decreases the Ca(2+)-binding affinity 100-fold and increases the Mg(2+)-binding affinity 10-fold. Both the Ca(2+)- and Mg(2+)-bound structures have been determined, and a structural basis has been proposed for the metal-ion-binding properties.

Conclusion

The E101D mutation does not affect the Mg(2+) coordination geometry of the binding loop, but it does pull the F helix 1.1 A towards the loop. The E101D-Ca(2+) structure reveals that this mutant cannot obtain the sevenfold coordination preferred by Ca(2+), presumably because of strain limits imposed by tertiary structure. Analysis of these results relative to previously reported structural information supports a model wherein the characteristics of the last coordinating residue and the plasticity of the Ca(2+)-binding loop delimit the allowable geometries for the coordinating sphere.

Articles - 1b8r mentioned but not cited (1)

  1. The dependence of all-atom statistical potentials on structural training database. Zhang C, Liu S, Zhou H, Zhou Y. Biophys J 86 3349-3358 (2004)


Reviews citing this publication (15)

  1. EF-hand calcium-binding proteins. Lewit-Bentley A, Réty S. Curr Opin Struct Biol 10 637-643 (2000)
  2. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J Mol Biol 359 509-525 (2006)
  3. Structural characteristics of protein binding sites for calcium and lanthanide ions. Pidcock E, Moore GR. J Biol Inorg Chem 6 479-489 (2001)
  4. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. Grabarek Z. Biochim Biophys Acta 1813 913-921 (2011)
  5. A Ca(2+)-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. Arif SH. Bioessays 31 410-421 (2009)
  6. Ca2+-binding motif of βγ-crystallins. Srivastava SS, Mishra A, Krishnan B, Sharma Y. J Biol Chem 289 10958-10966 (2014)
  7. Revisiting paradigms of Ca2+ signaling protein kinase regulation in plants. Bender KW, Zielinski RE, Huber SC. Biochem J 475 207-223 (2018)
  8. High pressure effects on allergen food proteins. Somkuti J, Smeller L. Biophys Chem 183 19-29 (2013)
  9. Calcium mishandling in diastolic dysfunction: mechanisms and potential therapies. Asp ML, Martindale JJ, Heinis FI, Wang W, Metzger JM. Biochim Biophys Acta 1833 895-900 (2013)
  10. Multivalent ions and biomolecules: Attempting a comprehensive perspective. Matsarskaia O, Roosen-Runge F, Schreiber F. Chemphyschem 21 1742-1767 (2020)
  11. Small molecular ion adsorption on proteins and DNAs revealed by separation techniques. Rabiller-Baudry M, Chaufer B. J Chromatogr B Analyt Technol Biomed Life Sci 797 331-345 (2003)
  12. The attributes of plakins in cancer and disease: perspectives on ovarian cancer progression, chemoresistance and recurrence. Wesley T, Berzins S, Kannourakis G, Ahmed N. Cell Commun Signal 19 55 (2021)
  13. Glutamatergic fast-spiking parvalbumin neurons in the lateral hypothalamus: Electrophysiological properties to behavior. Siemian JN, Sarsfield S, Aponte Y. Physiol Behav 221 112912 (2020)
  14. Parvalbumin: A Major Fish Allergen and a Forensically Relevant Marker. Mukherjee S, Horka P, Zdenkova K, Cermakova E. Genes (Basel) 14 223 (2023)
  15. Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Shalev DE. Int J Mol Sci 23 15957 (2022)

Articles citing this publication (40)

  1. Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Srikanth S, Jew M, Kim KD, Yee MK, Abramson J, Gwack Y. Proc Natl Acad Sci U S A 109 8682-8687 (2012)
  2. Molecular mechanisms of calcium and magnesium binding to parvalbumin. Cates MS, Teodoro ML, Phillips GN. Biophys J 82 1133-1146 (2002)
  3. Differential contribution of EF-hands to the Ca²⁺-dependent activation in the plant two-pore channel TPC1. Schulze C, Sticht H, Meyerhoff P, Dietrich P. Plant J 68 424-432 (2011)
  4. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. Kim J, Kim HY. FEBS Lett 580 5251-5256 (2006)
  5. X-ray structures of magnesium and manganese complexes with the N-terminal domain of calmodulin: insights into the mechanism and specificity of metal ion binding to an EF-hand. Senguen FT, Grabarek Z. Biochemistry 51 6182-6194 (2012)
  6. Noncanonical EF-hand motif strategically delays Ca2+ buffering to enhance cardiac performance. Wang W, Barnabei MS, Asp ML, Heinis FI, Arden E, Davis J, Braunlin E, Li Q, Davis JP, Potter JD, Metzger JM. Nat Med 19 305-312 (2013)
  7. Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences. Martin SR, Masino L, Bayley PM. Protein Sci 9 2477-2488 (2000)
  8. Many-body effect determines the selectivity for Ca2+ and Mg2+ in proteins. Jing Z, Liu C, Qi R, Ren P. Proc Natl Acad Sci U S A 115 E7495-E7501 (2018)
  9. Characterisation of purified parvalbumin from five fish species and nucleotide sequencing of this major allergen from Pacific pilchard, Sardinops sagax. Beale JE, Jeebhay MF, Lopata AL. Mol Immunol 46 2985-2993 (2009)
  10. A tunable LIC1-adaptor interaction modulates dynein activity in a cargo-specific manner. Lee IG, Cason SE, Alqassim SS, Holzbaur ELF, Dominguez R. Nat Commun 11 5695 (2020)
  11. Improving structure-based function prediction using molecular dynamics. Glazer DS, Radmer RJ, Altman RB. Structure 17 919-929 (2009)
  12. Breed, Diet, and Interaction Effects on Adipose Tissue Transcriptome in Iberian and Duroc Pigs Fed Different Energy Sources. Benítez R, Trakooljul N, Núñez Y, Isabel B, Murani E, De Mercado E, Gómez-Izquierdo E, García-Casco J, López-Bote C, Wimmers K, Óvilo C. Genes (Basel) 10 E589 (2019)
  13. Prediction of calcium-binding sites by combining loop-modeling with machine learning. Liu T, Altman RB. BMC Struct Biol 9 72 (2009)
  14. Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. Kapoor N, Gupta R, Menon ST, Folta-Stogniew E, Raleigh DP, Sakmar TP. J Biol Chem 285 31647-31660 (2010)
  15. Efficient algorithms to explore conformation spaces of flexible protein loops. Yao P, Dhanik A, Marz N, Propper R, Kou C, Liu G, van den Bedem H, Latombe JC, Halperin-Landsberg I, Altman RB. IEEE/ACM Trans Comput Biol Bioinform 5 534-545 (2008)
  16. Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding. Tsvetkov PO, Roman AY, Baksheeva VE, Nazipova AA, Shevelyova MP, Vladimirov VI, Buyanova MF, Zinchenko DV, Zamyatnin AA, Devred F, Golovin AV, Permyakov SE, Zernii EY. Front Mol Neurosci 11 459 (2018)
  17. Engineering Parvalbumin for the Heart: Optimizing the Mg Binding Properties of Rat β-Parvalbumin. Zhang J, Shettigar V, Zhang GC, Kindell DG, Liu X, López JJ, Yerrimuni V, Davis GA, Davis JP. Front Physiol 2 77 (2011)
  18. Structure of rat parvalbumin with deleted AB domain: implications for the evolution of EF hand calcium-binding proteins and possible physiological relevance. Thépaut M, Strub MP, Cavé A, Banères JL, Berchtold MW, Dumas C, Padilla A. Proteins 45 117-128 (2001)
  19. Combining molecular dynamics and machine learning to improve protein function recognition. Glazer DS, Radmer RJ, Altman RB. Pac Symp Biocomput 332-343 (2008)
  20. Calcium-induced structural rearrangements release autoinhibition in the Rap-GEF CalDAG-GEFI. Cook AA, Deng W, Ren J, Li R, Sondek J, Bergmeier W. J Biol Chem 293 8521-8529 (2018)
  21. Structural implications of Ca2+-dependent actin-bundling function of human EFhd2/Swiprosin-1. Park KR, Kwon MS, An JY, Lee JG, Youn HS, Lee Y, Kang JY, Kim TG, Lim JJ, Park JS, Lee SH, Song WK, Cheong HK, Jun CD, Eom SH. Sci Rep 6 39095 (2016)
  22. Effects of Modified Parvalbumin EF-Hand Motifs on Cardiac Myocyte Contractile Function. Asp ML, Sjaastad FV, Siddiqui JK, Davis JP, Metzger JM. Biophys J 110 2094-2105 (2016)
  23. Functional characterization of parvalbumin from the Arctic cod (Boreogadus saida): similarity in calcium affinity among parvalbumins from polar teleosts. Erickson JR, Moerland TS. Comp Biochem Physiol A Mol Integr Physiol 143 228-233 (2006)
  24. Interaction with adenylate cyclase toxin from Bordetella pertussis affects the metal binding properties of calmodulin. Springer TI, Emerson CC, Johns CW, Finley NL. FEBS Open Bio 7 25-34 (2017)
  25. Investigating the disorder-order transition of calmodulin binding domain upon binding calmodulin using molecular dynamics simulation. Zhang Y, Tan H, Chen G, Jia Z. J Mol Recognit 23 360-368 (2010)
  26. Papaya glutamine cyclotransferase shows a singular five-fold beta-propeller architecture that suggests a novel reaction mechanism. Guevara T, Mallorquí-Fernández N, García-Castellanos R, García-Piqué S, Ebert Petersen G, Lauritzen C, Pedersen J, Arnau J, Gomis-Rüth FX, Solà M. Biol Chem 387 1479-1486 (2006)
  27. Solution structure and fluctuation of the Mg(2+)-bound form of calmodulin C-terminal domain. Ohashi W, Hirota H, Yamazaki T. Protein Sci 20 690-701 (2011)
  28. Binding of calcium and magnesium to human cardiac troponin C. Rayani K, Seffernick J, Li AY, Davis JP, Spuches AM, Van Petegem F, Solaro RJ, Lindert S, Tibbits GF. J Biol Chem 296 100350 (2021)
  29. Blastocladiella emersonii expresses a centrin similar to Chlamydomonas reinhardtii isoform not found in late-diverging fungi. Ribichich KF, Gomes SL. FEBS Lett 579 4355-4360 (2005)
  30. Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity. Hoyer E, Knöppel J, Liebmann M, Steppert M, Raiwa M, Herczynski O, Hanspach E, Zehner S, Göttfert M, Tsushima S, Fahmy K, Oertel J. Sci Rep 9 7115 (2019)
  31. Recombinant expression and affinity purification of snake venom gland parvalbumin in Escherichia coli. Jia Y, Pérez JC. Comp Biochem Physiol A Mol Integr Physiol 153 303-308 (2009)
  32. Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations. Lopez AJ, Martínez L. J Comput Chem 39 1249-1258 (2018)
  33. Binding of Gd(3+) to the neuronal signalling protein calexcitin identifies an exchangeable Ca(2+)-binding site. Chataigner L, Guo J, Erskine PT, Coker AR, Wood SP, Gombos Z, Cooper JB. Acta Crystallogr F Struct Biol Commun 72 276-281 (2016)
  34. Comprehensive Sequence Analysis of Parvalbumins in Fish and Their Comparison with Parvalbumins in Tetrapod Species. Dijkstra JM, Kondo Y. Biology (Basel) 11 1713 (2022)
  35. EF-hand protein, EfhP, specifically binds Ca2+ and mediates Ca2+ regulation of virulence in a human pathogen Pseudomonas aeruginosa. Kayastha BB, Kubo A, Burch-Konda J, Dohmen RL, McCoy JL, Rogers RR, Mares S, Bevere J, Huckaby A, Witt W, Peng S, Chaudhary B, Mohanty S, Barbier M, Cook G, Deng J, Patrauchan MA. Sci Rep 12 8791 (2022)
  36. Identification of mouse soleus muscle proteins altered in response to changes in gravity loading. Ino Y, Ohira T, Kumagai K, Nakai Y, Akiyama T, Moriyama K, Takeda Y, Saito T, Ryo A, Inaba Y, Hirano H, Kimura Y. Sci Rep 13 15768 (2023)
  37. Identification of radiation responsive RBC membrane associated proteins (RMAPs) in whole-body γ-irradiated New Zealand white rabbits. Purkayastha J, Grover P, Mukherjee P, Kumar K, Chandna S. Biotechnol Rep (Amst) 37 e00783 (2023)
  38. Lanthanides as Calcium Mimetic Species in Calcium-Signaling/Buffering Proteins: The Effect of Lanthanide Type on the Ca2+/Ln3+ Competition. Nikolova V, Kircheva N, Dobrev S, Angelova S, Dudev T. Int J Mol Sci 24 6297 (2023)
  39. Reaction mechanism of the bioluminescent protein mnemiopsin1 revealed by X-ray crystallography and QM/MM simulations. Molakarimi M, Gorman MA, Mohseni A, Pashandi Z, Taghdir M, Naderi-Manesh H, Sajedi RH, Parker MW. J Biol Chem 294 20-27 (2019)
  40. Retinoic Acid Prevents the Neuronal Damage Through the Regulation of Parvalbumin in an Ischemic Stroke Model. Kang JB, Park DJ, Koh PO. Neurochem Res 48 487-501 (2023)


Related citations provided by authors (1)