1b8f Citations

Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile.

Biochemistry 38 5355-61 (1999)
Cited: 93 times
EuropePMC logo PMID: 10220322

Abstract

Histidine ammonia-lyase (EC 4.3.1.3) catalyzes the nonoxidative elimination of the alpha-amino group of histidine and is closely related to the important plant enzyme phenylalanine ammonia-lyase. The crystal structure of histidase from Pseudomonas putida was determined at 2.1 A resolution revealing a homotetramer with D2 symmetry, the molecular center of which is formed by 20 nearly parallel alpha-helices. The chain fold, but not the sequence, resembles those of fumarase C and related proteins. The structure shows that the reactive electrophile is a 4-methylidene-imidazole-5-one, which is formed autocatalytically by cyclization and dehydration of residues 142-144 with the sequence Ala-Ser-Gly. With respect to the first dehydration step, this modification resembles the chromophore of the green fluorescent protein. The active center is clearly established by the modification and by mutations. The observed geometry allowed us to model the bound substrate at a high confidence level. A reaction mechanism is proposed.

Articles - 1b8f mentioned but not cited (2)

  1. Structural and biochemical characterization of the therapeutic Anabaena variabilis phenylalanine ammonia lyase. Wang L, Gamez A, Archer H, Abola EE, Sarkissian CN, Fitzpatrick P, Wendt D, Zhang Y, Vellard M, Bliesath J, Bell SM, Lemontt JF, Scriver CR, Stevens RC. J Mol Biol 380 623-635 (2008)
  2. The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation. Lemay NP, Morgan AL, Archer EJ, Dickson LA, Megley CM, Zimmer M. Chem Phys 348 152-160 (2008)


Reviews citing this publication (22)

  1. Protein posttranslational modifications: the chemistry of proteome diversifications. Walsh CT, Garneau-Tsodikova S, Gatto GJ. Angew Chem Int Ed Engl 44 7342-7372 (2005)
  2. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Ferrer JL, Austin MB, Stewart C, Noel JP. Plant Physiol Biochem 46 356-370 (2008)
  3. Fluorescent proteins: maturation, photochemistry and photophysics. Remington SJ. Curr Opin Struct Biol 16 714-721 (2006)
  4. A modern view of phenylalanine ammonia lyase. MacDonald MJ, D'Cunha GB. Biochem Cell Biol 85 273-282 (2007)
  5. The evolution of phenylpropanoid metabolism in the green lineage. Tohge T, Watanabe M, Hoefgen R, Fernie AR. Crit Rev Biochem Mol Biol 48 123-152 (2013)
  6. New generation of biocatalysts for organic synthesis. Nestl BM, Hammer SC, Nebel BA, Hauer B. Angew Chem Int Ed Engl 53 3070-3095 (2014)
  7. Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Davin LB, Jourdes M, Patten AM, Kim KW, Vassão DG, Lewis NG. Nat Prod Rep 25 1015-1090 (2008)
  8. Family of the green fluorescent protein: journey to the end of the rainbow. Matz MV, Lukyanov KA, Lukyanov SA. Bioessays 24 953-959 (2002)
  9. Regulation of the histidine utilization (hut) system in bacteria. Bender RA. Microbiol Mol Biol Rev 76 565-584 (2012)
  10. Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges. Müller MM. Biochemistry 57 177-185 (2018)
  11. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids. Turner NJ. Curr Opin Chem Biol 15 234-240 (2011)
  12. Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine. Poppe L, Rétey J. Angew Chem Int Ed Engl 44 3668-3688 (2005)
  13. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Sariaslani FS. Annu Rev Microbiol 61 51-69 (2007)
  14. Novel cofactors via post-translational modifications of enzyme active sites. Okeley NM, van der Donk WA. Chem Biol 7 R159-71 (2000)
  15. Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Wang X. Funct Integr Genomics 11 13-22 (2011)
  16. Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Bode HB, Müller R. Plant Physiol 132 1153-1161 (2003)
  17. Methylidene-imidazolone: a novel electrophile for substrate activation. Poppe L. Curr Opin Chem Biol 5 512-524 (2001)
  18. Structure and chemistry of 4-methylideneimidazole-5-one containing enzymes. Cooke HA, Christianson CV, Bruner SD. Curr Opin Chem Biol 13 460-468 (2009)
  19. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions. Davidson VL. Biochemistry 57 3115-3125 (2018)
  20. Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. Mocz G. Mar Biotechnol (NY) 9 305-328 (2007)
  21. Radical-mediated dehydration reactions in anaerobic bacteria. Buckel W, Martins BM, Messerschmidt A, Golding BT. Biol Chem 386 951-959 (2005)
  22. Posttranslational chemistry of proteins of the GFP family. Pakhomov AA, Martynov VI. Biochemistry (Mosc) 74 250-259 (2009)

Articles citing this publication (69)

  1. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Ritter H, Schulz GE. Plant Cell 16 3426-3436 (2004)
  2. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Barondeau DP, Putnam CD, Kassmann CJ, Tainer JA, Getzoff ED. Proc Natl Acad Sci U S A 100 12111-12116 (2003)
  3. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. Kyndt JA, Meyer TE, Cusanovich MA, Van Beeumen JJ. FEBS Lett 512 240-244 (2002)
  4. Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Moffitt MC, Louie GV, Bowman ME, Pence J, Noel JP, Moore BS. Biochemistry 46 1004-1012 (2007)
  5. Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families. Torrance JW, Bartlett GJ, Porter CT, Thornton JM. J Mol Biol 347 565-581 (2005)
  6. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. Berner M, Krug D, Bihlmaier C, Vente A, Müller R, Bechthold A. J Bacteriol 188 2666-2673 (2006)
  7. Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Watts KT, Mijts BN, Lee PC, Manning AJ, Schmidt-Dannert C. Chem Biol 13 1317-1326 (2006)
  8. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae. Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Förster J, Maury J, Borodina I, Nielsen AT. Appl Environ Microbiol 81 4458-4476 (2015)
  9. Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in Taxol biosynthesis. Walker KD, Klettke K, Akiyama T, Croteau R. J Biol Chem 279 53947-53954 (2004)
  10. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Kumar A, Ellis BE. Plant Physiol 127 230-239 (2001)
  11. Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Louie GV, Bowman ME, Moffitt MC, Baiga TJ, Moore BS, Noel JP. Chem Biol 13 1327-1338 (2006)
  12. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25. Zhang XX, Rainey PB. Genetics 176 2165-2176 (2007)
  13. Inactivation, complementation, and heterologous expression of encP, a novel bacterial phenylalanine ammonia-lyase gene. Xiang L, Moore BS. J Biol Chem 277 32505-32509 (2002)
  14. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae? de Vries J, de Vries S, Slamovits CH, Rose LE, Archibald JM. Plant Cell Physiol 58 934-945 (2017)
  15. Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG. Genetics 185 1477-1487 (2010)
  16. Biochemical and Structural Analysis of Substrate Specificity of a Phenylalanine Ammonia-Lyase. Jun SY, Sattler SA, Cortez GS, Vermerris W, Sattler SE, Kang C. Plant Physiol 176 1452-1468 (2018)
  17. The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Mishin AS, Subach FV, Yampolsky IV, King W, Lukyanov KA, Verkhusha VV. Biochemistry 47 4666-4673 (2008)
  18. An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum. Röther D, Poppe L, Morlock G, Viergutz S, Rétey J. Eur J Biochem 269 3065-3075 (2002)
  19. The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes. Dickert S, Pierik AJ, Linder D, Buckel W. Eur J Biochem 267 3874-3884 (2000)
  20. Characterization of the active site of histidine ammonia-lyase from Pseudomonas putida. Röther D, Poppe L, Viergutz S, Langer B, Rétey J. Eur J Biochem 268 6011-6019 (2001)
  21. Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase. Baedeker M, Schulz GE. Structure 10 61-67 (2002)
  22. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Álvarez-Álvarez R, Botas A, Albillos SM, Rumbero A, Martín JF, Liras P. Microb Cell Fact 14 178 (2015)
  23. Kinetic analysis of the inhibition of phenylalanine ammonia-lyase by 2-aminoindan-2-phosphonic acid and other phenylalanine analogues. Appert C, Zoń J, Amrhein N. Phytochemistry 62 415-422 (2003)
  24. Enzymatic synthesis of enantiopure alpha- and beta-amino acids by phenylalanine aminomutase-catalysed amination of cinnamic acid derivatives. Wu B, Szymanski W, Wietzes P, de Wildeman S, Poelarends GJ, Feringa BL, Janssen DB. Chembiochem 10 338-344 (2009)
  25. Overexpression of a designed 2.2 kb gene of eukaryotic phenylalanine ammonia-lyase in Escherichia coli. Baedeker M, Schulz GE. FEBS Lett 457 57-60 (1999)
  26. The essential tyrosine-containing loop conformation and the role of the C-terminal multi-helix region in eukaryotic phenylalanine ammonia-lyases. Pilbák S, Tomin A, Rétey J, Poppe L. FEBS J 273 1004-1019 (2006)
  27. Mutational analysis of phenylalanine ammonia lyase to improve reactions rates for various substrates. Bartsch S, Bornscheuer UT. Protein Eng Des Sel 23 929-933 (2010)
  28. Structure-based epitope and PEGylation sites mapping of phenylalanine ammonia-lyase for enzyme substitution treatment of phenylketonuria. Gámez A, Wang L, Sarkissian CN, Wendt D, Fitzpatrick P, Lemontt JF, Scriver CR, Stevens RC. Mol Genet Metab 91 325-334 (2007)
  29. Contributions of conserved serine and tyrosine residues to catalysis, ligand binding, and cofactor processing in the active site of tyrosine ammonia lyase. Schroeder AC, Kumaran S, Hicks LM, Cahoon RE, Halls C, Yu O, Jez JM. Phytochemistry 69 1496-1506 (2008)
  30. Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides. Xue Z, McCluskey M, Cantera K, Sariaslani FS, Huang L. J Ind Microbiol Biotechnol 34 599-604 (2007)
  31. Purification, cloning, and functional expression of phenylalanine aminomutase: the first committed step in Taxol side-chain biosynthesis. Steele CL, Chen Y, Dougherty BA, Li W, Hofstead S, Lam KS, Xing Z, Chiang SJ. Arch Biochem Biophys 438 1-10 (2005)
  32. A single residue influences the reaction mechanism of ammonia lyases and mutases. Bartsch S, Bornscheuer UT. Angew Chem Int Ed Engl 48 3362-3365 (2009)
  33. Insights into enzyme evolution revealed by the structure of methylaspartate ammonia lyase. Levy CW, Buckley PA, Sedelnikova S, Kato Y, Asano Y, Rice DW, Baker PJ. Structure 10 105-113 (2002)
  34. Mechanisms of inhibition of phenylalanine ammonia-lyase by phenol inhibitors and phenol/glycine synergistic inhibitors. Alunni S, Cipiciani A, Fioroni G, Ottavi L. Arch Biochem Biophys 412 170-175 (2003)
  35. Structures of two histidine ammonia-lyase modifications and implications for the catalytic mechanism. Baedeker M, Schulz GE. Eur J Biochem 269 1790-1797 (2002)
  36. Mechanism-inspired engineering of phenylalanine aminomutase for enhanced β-regioselective asymmetric amination of cinnamates. Wu B, Szymański W, Wybenga GG, Heberling MM, Bartsch S, de Wildeman S, Poelarends GJ, Feringa BL, Dijkstra BW, Janssen DB. Angew Chem Int Ed Engl 51 482-486 (2012)
  37. Molecular evolution and functional characterisation of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera: novel insight into the evolution of the PAL family in angiosperms. Wu Z, Gui S, Wang S, Ding Y. BMC Evol Biol 14 100 (2014)
  38. Phenylalanine Ammonia-Lyase-Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles. Weiser D, Bencze LC, Bánóczi G, Ender F, Kiss R, Kókai E, Szilágyi A, Vértessy BG, Farkas Ö, Paizs C, Poppe L. Chembiochem 16 2283-2288 (2015)
  39. Alteration of substrate specificity of aspartase by directed evolution. Asano Y, Kira I, Yokozeki K. Biomol Eng 22 95-101 (2005)
  40. Characterization of ergothionase from Burkholderia sp. HME13 and its application to enzymatic quantification of ergothioneine. Muramatsu H, Matsuo H, Okada N, Ueda M, Yamamoto H, Kato S, Nagata S. Appl Microbiol Biotechnol 97 5389-5400 (2013)
  41. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus. Kovács K, Bánóczi G, Varga A, Szabó I, Holczinger A, Hornyánszky G, Zagyva I, Paizs C, Vértessy BG, Poppe L. PLoS One 9 e85943 (2014)
  42. Mechanism of the tyrosine ammonia lyase reaction-tandem nucleophilic and electrophilic enhancement by a proton transfer. Pilbák S, Farkas Ö, Poppe L. Chemistry 18 7793-7802 (2012)
  43. Structure and action of urocanase. Kessler D, Rétey J, Schulz GE. J Mol Biol 342 183-194 (2004)
  44. Cloning and characterization of a novel tyrosine ammonia lyase-encoding gene involved in bagremycins biosynthesis in Streptomyces sp. Zhu Y, Liao S, Ye J, Zhang H. Biotechnol Lett 34 269-274 (2012)
  45. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway. Lovelock SL, Lloyd RC, Turner NJ. Angew Chem Int Ed Engl 53 4652-4656 (2014)
  46. A common catalytic mechanism for proteins of the HutI family. Tyagi R, Eswaramoorthy S, Burley SK, Raushel FM, Swaminathan S. Biochemistry 47 5608-5615 (2008)
  47. A community-driven reconstruction of the Aspergillus niger metabolic network. Brandl J, Aguilar-Pontes MV, Schäpe P, Noerregaard A, Arvas M, Ram AFJ, Meyer V, Tsang A, de Vries RP, Andersen MR. Fungal Biol Biotechnol 5 16 (2018)
  48. Insights into the mechanistic pathway of the Pantoea agglomerans phenylalanine aminomutase. Strom S, Wanninayake U, Ratnayake ND, Walker KD, Geiger JH. Angew Chem Int Ed Engl 51 2898-2902 (2012)
  49. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites. Cooke HA, Bruner SD. Biopolymers 93 802-810 (2010)
  50. Metagenomic evidence of a novel family of anammox bacteria in a subsea environment. Suarez C, Dalcin Martins P, Jetten MSM, Karačić S, Wilén BM, Modin O, Hagelia P, Hermansson M, Persson F. Environ Microbiol 24 2348-2360 (2022)
  51. New insights in the catalytic mechanism of tyrosine ammonia-lyase given by QM/MM and QM cluster models. Pinto GP, Ribeiro AJ, Ramos MJ, Fernandes PA, Toscano M, Russo N. Arch Biochem Biophys 582 107-115 (2015)
  52. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. Pombo MA, Martínez GA, Civello PM. Plant Sci 181 111-118 (2011)
  53. Genome-Based Characterization of Biological Processes That Differentiate Closely Related Bacteria. Palmer M, Steenkamp ET, Coetzee MPA, Blom J, Venter SN. Front Microbiol 9 113 (2018)
  54. Thermal bifunctionality of bacterial phenylalanine aminomutase and ammonia lyase enzymes. Chesters C, Wilding M, Goodall M, Micklefield J. Angew Chem Int Ed Engl 51 4344-4348 (2012)
  55. Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion. Seff AL, Pilbák S, Silaghi-Dumitrescu I, Poppe L. J Mol Model 17 1551-1563 (2011)
  56. Inhibition of histidine ammonia lyase by heteroaryl-alanines and acrylates. Katona A, Toşa MI, Paizs C, Rétey J. Chem Biodivers 3 502-508 (2006)
  57. 1,4-Dihydro-l-phenylalanine-its synthesis and behavior in the phenylalanine ammonia-lyase reaction. Skolaut A, Rétey J. Arch Biochem Biophys 393 187-191 (2001)
  58. Homemade cofactors: self-processing in galactose oxidase. Xie L, van der Donk WA. Proc Natl Acad Sci U S A 98 12863-12865 (2001)
  59. Inhibitors of phenylalanine ammonia-lyase: 1-aminobenzylphosphonic acids substituted in the benzene ring. Zon J, Amrhein N, Gancarz R. Phytochemistry 59 9-21 (2002)
  60. Amino acid utilization by Chlamydomonas reinhardtii: specific study of histidine. Hellio C, Veron B, Le Gal Y. Plant Physiol Biochem 42 257-264 (2004)
  61. Isolation and sequencing a genomic DNA encoding for phenylalanine ammonia-lyase from Phalaenopsis. Su V, Hsu BD. DNA Seq 14 442-449 (2003)
  62. Pseudomonas fluorescens Strain R124 Encodes Three Different MIO Enzymes. Csuka P, Juhász V, Kohári S, Filip A, Varga A, Sátorhelyi P, Bencze LC, Barton H, Paizs C, Poppe L. Chembiochem 19 411-418 (2018)
  63. An Unusually Rapid Protein Backbone Modification Stabilizes the Essential Bacterial Enzyme MurA. Zhang T, Hansen K, Politis A, Müller MM. Biochemistry 59 3683-3695 (2020)
  64. Purification and characterization of beta-methylaspartase from Fusobacterium varium. Bearne SL, White RL, MacDonnell JE, Bahrami S, Grønlund J. Mol Cell Biochem 221 117-126 (2001)
  65. A Methylidene Group in the Phosphonic Acid Analogue of Phenylalanine Reverses the Enantiopreference of Binding to Phenylalanine Ammonia-Lyases. Bata Z, Qian R, Roller A, Horak J, Bencze LC, Paizs C, Hammerschmidt F, Vértessy BG, Poppe L. Adv Synth Catal 359 2109-2120 (2017)
  66. Insight into the mechanism of aminomutase reaction: a case study of phenylalanine aminomutase by computational approach. Wang K, Hou Q, Liu Y. J Mol Graph Model 46 65-73 (2013)
  67. Plant-Specific Domains and Fragmented Sequences Imply Non-Canonical Functions in Plant Aminoacyl-tRNA Synthetases. Saga Y, Kawashima M, Sakai S, Yamazaki K, Kaneko M, Takahashi M, Sato N, Toyoda Y, Takase S, Nakano T, Kawakami N, Kushiro T. Genes (Basel) 11 E1056 (2020)
  68. Elusive Dehydroalanine Derivatives with Enhanced Reactivity. Aydillo C, Mazo N, Navo CD, Jiménez-Osés G. Chembiochem 20 1246-1250 (2019)
  69. Microreactor equipped with naturally acid-resistant histidine ammonia lyase from an extremophile. Ade C, Marcelino TF, Dulchavsky M, Wu K, Bardwell JCA, Städler B. Mater Adv 3 3649-3662 (2022)


Related citations provided by authors (1)

  1. Homogenization and crystallization of histidine ammonia-lyase by exchange of a surface cysteine residue.. Schwede TF, Bädeker M, Langer M, Rétey J, Schulz GE Protein Eng 12 151-3 (1999)