1b4v Citations

Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants.

Biochemistry 38 4277-86 (1999)
Related entries: 1b8s, 1cbo, 1cc2

Cited: 71 times
EuropePMC logo PMID: 10194345

Abstract

Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, comprising residues 78-87 and residues 433-436, which act as a lid over the active site and facilitate binding of the substrate [Vrielink et al. (1991) J. Mol. Biol. 219, 533-554; Li et al. (1993) Biochemistry 32, 11507-11515]. It was postulated that these loops must open, forming a hydrophobic channel between the membrane and the active site of the protein and thus sequestering the cholesterol substrate from the aqueous environment. Here we describe the three-dimensional structure of the homologous enzyme from Streptomyces refined to 1.5 A resolution. Structural comparisons to the enzyme from B. sterolicum reveal significant conformational differences in these loop regions; in particular, a region of the loop comprising residues 78-87 adopts a small amphipathic helical turn with hydrophobic residues directed toward the active site cavity and hydrophilic residues directed toward the external surface of the molecule. It seems reasonable that this increased rigidity reduces the entropy loss that occurs upon binding substrate. Consequently, the Streptomyces enzyme is a more efficient catalyst. In addition, we have determined the structures of three active site mutants which have significantly reduced activity for either the oxidation (His447Asn and His447Gln) or the isomerization (Glu361Gln). Our structural and kinetic data indicate that His447 and Glu361 act as general base catalysts in association with conserved water H2O541 and Asn485. The His447, Glu361, H2O541, and Asn485 hydrogen bond network is conserved among other oxidoreductases. This catalytic tetrad appears to be a structural motif that occurs in flavoenzymes that catalyze the oxidation of unactivated alcohols.

Reviews - 1b4v mentioned but not cited (1)

  1. A quantum chemical approach to biological reaction with a theory of solutions. Takahashi H. Front Biosci (Landmark Ed) 14 1745-1760 (2009)

Articles - 1b4v mentioned but not cited (8)

  1. Recognition of functional sites in protein structures. Shulman-Peleg A, Nussinov R, Wolfson HJ. J Mol Biol 339 607-633 (2004)
  2. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine. Winn PJ, Lüdemann SK, Gauges R, Lounnas V, Wade RC. Proc Natl Acad Sci U S A 99 5361-5366 (2002)
  3. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct Biol 7 44 (2007)
  4. Combined quantum mechanical and molecular mechanical simulations of one- and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase. Bhattacharyya S, Stankovich MT, Truhlar DG, Gao J. J Phys Chem A 111 5729-5742 (2007)
  5. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production. Marques MA, Berrêdo-Pinho M, Rosa TL, Pujari V, Lemes RM, Lery LM, Silva CA, Guimarães AC, Atella GC, Wheat WH, Brennan PJ, Crick DC, Belisle JT, Pessolani MC. J Bacteriol 197 3698-3707 (2015)
  6. Cloning, expression, and in silico structural modeling of cholesterol oxidase of Acinetobacter sp. strain RAMD in E. coli. Mahmoud HE, El-Far SW, Embaby AM. FEBS Open Bio 11 2560-2575 (2021)
  7. Computing the protein binding sites. Guo F, Wang L. BMC Bioinformatics 13 Suppl 10 S2 (2012)
  8. Development of a novel spatiotemporal depletion system for cellular cholesterol. Pham H, Singaram I, Sun J, Ralko A, Puckett M, Sharma A, Vrielink A, Cho W. J Lipid Res 63 100178 (2022)


Reviews citing this publication (12)

  1. Sequence-structure analysis of FAD-containing proteins. Dym O, Eisenberg D. Protein Sci 10 1712-1728 (2001)
  2. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Hernández-Ortega A, Ferreira P, Martínez AT. Appl Microbiol Biotechnol 93 1395-1410 (2012)
  3. Catabolism and biotechnological applications of cholesterol degrading bacteria. García JL, Uhía I, Galán B. Microb Biotechnol 5 679-699 (2012)
  4. Cholesterol reporter molecules. Gimpl G, Gehrig-Burger K. Biosci Rep 27 335-358 (2007)
  5. Recent advances in cholesterol biosensor. Arya SK, Datta M, Malhotra BD. Biosens Bioelectron 23 1083-1100 (2008)
  6. Cholesterol oxidase: biochemistry and structural features. Vrielink A, Ghisla S. FEBS J 276 6826-6843 (2009)
  7. Cholesterol oxidase: physiological functions. Kreit J, Sampson NS. FEBS J 276 6844-6856 (2009)
  8. An overview on alcohol oxidases and their potential applications. Goswami P, Chinnadayyala SS, Chakraborty M, Kumar AK, Kakoti A. Appl Microbiol Biotechnol 97 4259-4275 (2013)
  9. Characteristics and biotechnological applications of microbial cholesterol oxidases. Doukyu N. Appl Microbiol Biotechnol 83 825-837 (2009)
  10. Sub-Angstrom resolution enzyme X-ray structures: is seeing believing? Vrielink A, Sampson N. Curr Opin Struct Biol 13 709-715 (2003)
  11. Protein engineering of microbial cholesterol oxidases: a molecular approach toward development of new enzymes with new properties. Moradpour Z, Ghasemian A. Appl Microbiol Biotechnol 100 4323-4336 (2016)
  12. Dissection of a flavoenzyme active site: the reaction catalyzed by cholesterol oxidase. Sampson NS. Antioxid Redox Signal 3 839-846 (2001)

Articles citing this publication (50)

  1. Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Friedland N, Liou HL, Lobel P, Stock AM. Proc Natl Acad Sci U S A 100 2512-2517 (2003)
  2. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Hayward RD, Cain RJ, McGhie EJ, Phillips N, Garner MJ, Koronakis V. Mol Microbiol 56 590-603 (2005)
  3. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Bottoms CA, Smith PE, Tanner JJ. Protein Sci 11 2125-2137 (2002)
  4. Examination of Cholesterol oxidase attachment to magnetic nanoparticles. Kouassi GK, Irudayaraj J, McCarty G. J Nanobiotechnology 3 1 (2005)
  5. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. Yeh JI, Chinte U, Du S. Proc Natl Acad Sci U S A 105 3280-3285 (2008)
  6. Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. Hallberg BM, Henriksson G, Pettersson G, Divne C. J Mol Biol 315 421-434 (2002)
  7. Sub-atomic resolution crystal structure of cholesterol oxidase: what atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. Lario PI, Sampson N, Vrielink A. J Mol Biol 326 1635-1650 (2003)
  8. Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase. Hallberg BM, Leitner C, Haltrich D, Divne C. J Mol Biol 341 781-796 (2004)
  9. Crystal structures of Mycobacteria tuberculosis and Klebsiella pneumoniae UDP-galactopyranose mutase in the oxidised state and Klebsiella pneumoniae UDP-galactopyranose mutase in the (active) reduced state. Beis K, Srikannathasan V, Liu H, Fullerton SW, Bamford VA, Sanders DA, Whitfield C, McNeil MR, Naismith JH. J Mol Biol 348 971-982 (2005)
  10. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Zámocký M, Hallberg M, Ludwig R, Divne C, Haltrich D. Gene 338 1-14 (2004)
  11. Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. Murcia M, Faráldo-Gómez JD, Maxfield FR, Roux B. J Lipid Res 47 2614-2630 (2006)
  12. Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. Caldinelli L, Iametti S, Barbiroli A, Bonomi F, Fessas D, Molla G, Pilone MS, Pollegioni L. J Biol Chem 280 22572-22581 (2005)
  13. Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2 155. Uhía I, Galán B, Morales V, García JL. Environ Microbiol 13 943-959 (2011)
  14. Cholesterol oxidase from Brevibacterium sterolicum. The relationship between covalent flavinylation and redox properties. Motteran L, Pilone MS, Molla G, Ghisla S, Pollegioni L. J Biol Chem 276 18024-18030 (2001)
  15. Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Rouquette-Jazdanian AK, Pelassy C, Breittmayer JP, Aussel C. Cell Signal 18 105-122 (2006)
  16. Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Mendes MV, Recio E, Antón N, Guerra SM, Santos-Aberturas J, Martín JF, Aparicio JF. Chem Biol 14 279-290 (2007)
  17. Unraveling Cholesterol Catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 Acyl-CoA Dehydrogenase Initiates β-Oxidation of 3-Oxo-cholest-4-en-26-oyl CoA. Yang M, Lu R, Guja KE, Wipperman MF, St Clair JR, Bonds AC, Garcia-Diaz M, Sampson NS. ACS Infect Dis 1 110-125 (2015)
  18. Crystal structure analysis of free and substrate-bound 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans. Kachalova GS, Bourenkov GP, Mengesdorf T, Schenk S, Maun HR, Burghammer M, Riekel C, Decker K, Bartunik HD. J Mol Biol 396 785-799 (2010)
  19. Atomic resolution crystallography reveals how changes in pH shape the protein microenvironment. Lyubimov AY, Lario PI, Moustafa I, Vrielink A. Nat Chem Biol 2 259-264 (2006)
  20. A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase. Pitsawong W, Sucharitakul J, Prongjit M, Tan TC, Spadiut O, Haltrich D, Divne C, Chaiyen P. J Biol Chem 285 9697-9705 (2010)
  21. Microbial cholesterol oxidases: bioconversion enzymes or signal proteins? Aparicio JF, Martín JF. Mol Biosyst 4 804-809 (2008)
  22. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis. Dreveny I, Kratky C, Gruber K. Protein Sci 11 292-300 (2002)
  23. Distortion of flavin geometry is linked to ligand binding in cholesterol oxidase. Lyubimov AY, Heard K, Tang H, Sampson NS, Vrielink A. Protein Sci 16 2647-2656 (2007)
  24. Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme. Ferreira P, Ruiz-Dueñas FJ, Martínez MJ, van Berkel WJ, Martínez AT. FEBS J 273 4878-4888 (2006)
  25. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase. Lim L, Molla G, Guinn N, Ghisla S, Pollegioni L, Vrielink A. Biochem J 400 13-22 (2006)
  26. Crystal structure of chorismate synthase: a novel FMN-binding protein fold and functional insights. Ahn HJ, Yoon HJ, Lee B, Suh SW. J Mol Biol 336 903-915 (2004)
  27. Detecting similarities among distant homologous proteins by comparison of domain flexibilities. Pandini A, Mauri G, Bordogna A, Bonati L. Protein Eng Des Sel 20 285-299 (2007)
  28. Structure of choline oxidase in complex with the reaction product glycine betaine. Salvi F, Wang YF, Weber IT, Gadda G. Acta Crystallogr D Biol Crystallogr 70 405-413 (2014)
  29. Alteration of substrate specificity of cholesterol oxidase from Streptomyces sp. by site-directed mutagenesis. Toyama M, Yamashita M, Yoneda M, Zaborowski A, Nagato M, Ono H, Hirayama N, Murooka Y. Protein Eng 15 477-484 (2002)
  30. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. Ferreira P, Hernández-Ortega A, Lucas F, Carro J, Herguedas B, Borrelli KW, Guallar V, Martínez AT, Medina M. FEBS J 282 3091-3106 (2015)
  31. Construction of a catalytically inactive cholesterol oxidase mutant: investigation of the interplay between active site-residues glutamate 361 and histidine 447. Yin Y, Liu P, Anderson RG, Sampson NS. Arch Biochem Biophys 402 235-242 (2002)
  32. Affinity purification of a cholesterol oxidase expressed in Escherichia coli. Xin Y, Yang H, Xia X, Zhang L, Cheng C, Mou G, Shi J, Han Y, Wang W. J Chromatogr B Analyt Technol Biomed Life Sci 879 853-858 (2011)
  33. Membrane-associated glucose-methanol-choline oxidoreductase family enzymes PhcC and PhcD are essential for enantioselective catabolism of dehydrodiconiferyl alcohol. Takahashi K, Hirose Y, Kamimura N, Hishiyama S, Hara H, Araki T, Kasai D, Kajita S, Katayama Y, Fukuda M, Masai E. Appl Environ Microbiol 81 8022-8036 (2015)
  34. Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis. Zarychta B, Lyubimov A, Ahmed M, Munshi P, Guillot B, Vrielink A, Jelsch C. Acta Crystallogr D Biol Crystallogr 71 954-968 (2015)
  35. Crystal structure of pyridoxine 4-oxidase from Mesorhizobium loti. Mugo AN, Kobayashi J, Yamasaki T, Mikami B, Ohnishi K, Yoshikane Y, Yagi T. Biochim Biophys Acta 1834 953-963 (2013)
  36. Improvement of the thermostability and enzymatic activity of cholesterol oxidase by site-directed mutagenesis. Sun Y, Yang H, Wang W. Biotechnol Lett 33 2049-2055 (2011)
  37. Formation of an Angular Aromatic Polyketide from a Linear Anthrene Precursor via Oxidative Rearrangement. Gao G, Liu X, Xu M, Wang Y, Zhang F, Xu L, Lv J, Long Q, Kang Q, Ou HY, Wang Y, Rohr J, Deng Z, Jiang M, Lin S, Tao M. Cell Chem Biol 24 881-891.e4 (2017)
  38. Rational design of cholesterol oxidase for efficient bioresolution of cholestane skeleton substrates. Qin HM, Zhu Z, Ma Z, Xu P, Guo Q, Li S, Wang JW, Mao S, Liu F, Lu F. Sci Rep 7 16375 (2017)
  39. Antifungal tradecraft by cholesterol oxidase. Nesbitt NM, Sampson NS. Chem Biol 14 238-241 (2007)
  40. Application-Specific Catalyst Layers: Pt-Containing Carbon Nanofibers for Hydrogen Peroxide Detection. Laurila T, Sainio S, Jiang H, Isoaho N, Koehne JE, Etula J, Koskinen J, Meyyappan M. ACS Omega 2 496-507 (2017)
  41. Computational insights for the hydride transfer and distinctive roles of key residues in cholesterol oxidase. Yu LJ, Golden E, Chen N, Zhao Y, Vrielink A, Karton A. Sci Rep 7 17265 (2017)
  42. Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene. Pereira SO, Santos NF, Carvalho AF, Fernandes AJS, Costa FM. Nanomaterials (Basel) 11 1893 (2021)
  43. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization. Golden E, Karton A, Vrielink A. Acta Crystallogr D Biol Crystallogr 70 3155-3166 (2014)
  44. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells. Chernov KG, Neuvonen M, Brock I, Ikonen E, Verkhusha VV. J Biol Chem 292 8811-8822 (2017)
  45. Refolding of a novel cholesterol oxidase from Pimelobacter simplex reveals dehydrogenation activity. Qin HM, Wang JW, Guo Q, Li S, Xu P, Zhu Z, Sun D, Lu F. Protein Expr Purif 139 1-7 (2017)
  46. Small exterior hydrophobic cluster contributes to conformational stability and steroid binding in ketosteroid isomerase from Pseudomonas putida biotype B. Yun YS, Nam GH, Kim YG, Oh BH, Choi KY. FEBS J 272 1999-2011 (2005)
  47. Characterization and overproduction of cell-associated cholesterol oxidase ChoD from Streptomyces lavendulae YAKB-15. Yamada K, Koroleva A, Laughlin M, Oksanen N, Akhgari A, Safronova V, Yakovleva E, Kolodyaznaya V, Buldakova T, Metsä-Ketelä M. Sci Rep 9 11850 (2019)
  48. Production and characterization of recombinant perdeuterated cholesterol oxidase. Golden E, Attwood PV, Duff AP, Meilleur F, Vrielink A. Anal Biochem 485 102-108 (2015)
  49. An Engineered Cholesterol Oxidase Catalyses Enantioselective Oxidation of Non-steroidal Secondary Alcohols. Heath RS, Sangster JJ, Turner NJ. Chembiochem 23 e202200075 (2022)
  50. Computational site-directed mutagenesis studies of the role of the hydrophobic triad on substrate binding in cholesterol oxidase. Harb LH, Arooj M, Vrielink A, Mancera RL. Proteins 85 1645-1655 (2017)