1ax1 Citations

Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides.

J Mol Biol 277 917-32 (1998)
Related entries: 1ax0, 1ax2, 1axy, 1axz

Cited: 71 times
EuropePMC logo PMID: 9545381

Abstract

The structures of the Erythrina corallodendron lectin (EcorL) and of its complexes with galactose, N-acetylgalactosamine, lactose and N-acetyllactosamine were determined at a resolution of 1.9 to 1.95 A. The final R-values of the five models are in the range 0.169 to 0.181. The unusual, non-canonical, dimer interface of EcorL is made of beta-strands from the two monomers, which face one another in a "hand-shake" mode. The galactose molecule in the primary binding site is bound in an identical way in all four complexes. Features of the electrostatic potential of the galactose molecule match those of the potential in the combining site, thus probably pointing to the contribution of the electrostatic energy to determining the orientation of the ligand. No conformational change occurs in the protein upon binding the ligand. Subtle variations in the binding mode of the second monosaccharide (glucose in the complex with lactose and N-acetylglucosamine in the complex with N-acetyllactosamine) were observed. The mobility of Gln219 is lower in the complexes with the disaccharides than in the complexes with the monosaccharides, indicating further recruitment of this residue to ligand binding through more extensive hydrogen bonding in the former complexes. Water molecules that have been located in the combining sites of the five structures undergo rearrangement in response to binding of the different ligands. The new structural information is in qualitative agreement with thermodynamic data on the binding to EcorL.

Articles - 1ax1 mentioned but not cited (15)

  1. CSAR benchmark exercise of 2010: selection of the protein-ligand complexes. Dunbar JB, Smith RD, Yang CY, Ung PM, Lexa KW, Khazanov NA, Stuckey JA, Wang S, Carlson HA. J Chem Inf Model 51 2036-2046 (2011)
  2. Energetics of galactose- and glucose-aromatic amino acid interactions: implications for binding in galactose-specific proteins. Sujatha MS, Sasidhar YU, Balaji PV. Protein Sci 13 2502-2514 (2004)
  3. Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding. Liu S, Gao X, Xia G. Theor Appl Genet 116 325-334 (2008)
  4. Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Feng D, Xia G, Zhao S, Chen F. Theor Appl Genet 110 136-144 (2004)
  5. Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour. Rakszegi M, Molnár I, Lovegrove A, Darkó É, Farkas A, Láng L, Bedő Z, Doležel J, Molnár-Láng M, Shewry P. Front Plant Sci 8 1529 (2017)
  6. Mapping of ligand-binding cavities in proteins. Andersson CD, Chen BY, Linusson A. Proteins 78 1408-1422 (2010)
  7. Characterization and Relative Quantitation of Wheat, Rye, and Barley Gluten Protein Types by Liquid Chromatography-Tandem Mass Spectrometry. Lexhaller B, Colgrave ML, Scherf KA. Front Plant Sci 10 1530 (2019)
  8. High Density Mapping of Quantitative Trait Loci Conferring Gluten Strength in Canadian Durum Wheat. Ruan Y, Yu B, Knox RE, Singh AK, DePauw R, Cuthbert R, Zhang W, Piche I, Gao P, Sharpe A, Fobert P. Front Plant Sci 11 170 (2020)
  9. Effect of extra cysteine residue of new mutant 1Ax1 subunit on the functional properties of common wheat. Li M, Wang Y, Ma F, Zeng J, Chang J, Chen M, Li K, Yang G, Wang Y, He G. Sci Rep 7 7510 (2017)
  10. Haplotype variation of Glu-D1 locus and the origin of Glu-D1d allele conferring superior end-use qualities in common wheat. Dong Z, Yang Y, Li Y, Zhang K, Lou H, An X, Dong L, Gu YQ, Anderson OD, Liu X, Qin H, Wang D. PLoS One 8 e74859 (2013)
  11. Simple Coordination Geometry Descriptors Allow to Accurately Predict Metal-Binding Sites in Proteins. Sciortino G, Garribba E, Rodríguez-Guerra Pedregal J, Maréchal JD. ACS Omega 4 3726-3731 (2019)
  12. Proteogenomic Characterization of Novel x-Type High Molecular Weight Glutenin Subunit 1Ax1.1. Ribeiro M, Bancel E, Faye A, Dardevet M, Ravel C, Branlard G, Igrejas G. Int J Mol Sci 14 5650-5667 (2013)
  13. CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface. Li M, Qing G, Xiong Y, Lai Y, Sun T. Sci Rep 5 15742 (2015)
  14. Molecular Characterization and SNP-Based Molecular Marker Development of Two Novel High Molecular Weight Glutenin Genes from Triticum spelta L. Cao Y, Zhang J, Wang R, Sun H, Yan Y. Int J Mol Sci 23 11104 (2022)
  15. Wheat Glu-A1a encoded 1Ax1 subunit enhances gluten physicochemical properties and molecular structures that confer superior breadmaking quality. Zhang J, Luo F, Sun H, Wang J, Duan W, Yan Y. Int J Biol Macromol 225 701-714 (2023)


Reviews citing this publication (10)

  1. Cross-reactivity of IgE antibodies to allergens. Aalberse RC, Akkerdaas J, van Ree R. Allergy 56 478-490 (2001)
  2. Lectins. Vijayan M, Chandra N. Curr Opin Struct Biol 9 707-714 (1999)
  3. Structural characteristics of protein binding sites for calcium and lanthanide ions. Pidcock E, Moore GR. J Biol Inorg Chem 6 479-489 (2001)
  4. N- and O-linked oligosaccharides of allergenic glycoproteins. Fötisch K, Vieths S. Glycoconj J 18 373-390 (2001)
  5. Novel structures of plant lectins and their complexes with carbohydrates. Bouckaert J, Hamelryck T, Wyns L, Loris R. Curr Opin Struct Biol 9 572-577 (1999)
  6. Interfering with the sugar code: design and synthesis of oligosaccharide mimics. Bernardi A, Cheshev P. Chemistry 14 7434-7441 (2008)
  7. Computational modeling of the sugar-lectin interaction. Neumann D, Lehr CM, Lenhof HP, Kohlbacher O. Adv Drug Deliv Rev 56 437-457 (2004)
  8. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Barre A, Bourne Y, Van Damme EJM, Rougé P. Int J Mol Sci 20 E254 (2019)
  9. Atomic displacement parameters in structural biology. Carugo O. Amino Acids 50 775-786 (2018)
  10. Research advances and prospects of legume lectins. Katoch R, Tripathi A. J Biosci 46 104 (2021)

Articles citing this publication (46)

  1. Lectins: tools for the molecular understanding of the glycocode. Ambrosi M, Cameron NR, Davis BG. Org Biomol Chem 3 1593-1608 (2005)
  2. An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides. Imberty A, Gautier C, Lescar J, Pérez S, Wyns L, Loris R. J Biol Chem 275 17541-17548 (2000)
  3. Carbohydrate binding, quaternary structure and a novel hydrophobic binding site in two legume lectin oligomers from Dolichos biflorus. Hamelryck TW, Loris R, Bouckaert J, Dao-Thi MH, Strecker G, Imberty A, Fernandez E, Wyns L, Etzler ME. J Mol Biol 286 1161-1177 (1999)
  4. Trehalose-protein interaction in aqueous solution. Lins RD, Pereira CS, Hünenberger PH. Proteins 55 177-186 (2004)
  5. Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-alpha-D-mannose: implications to the generation of carbohydrate specificity. Pratap JV, Jeyaprakash AA, Rani PG, Sekar K, Surolia A, Vijayan M. J Mol Biol 317 237-247 (2002)
  6. Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Seismann H, Blank S, Braren I, Greunke K, Cifuentes L, Grunwald T, Bredehorst R, Ollert M, Spillner E. Mol Immunol 47 799-808 (2010)
  7. High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 A resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Mitchell EP, Sabin C, Snajdrová L, Pokorná M, Perret S, Gautier C, Hofr C, Gilboa-Garber N, Koca J, Wimmerová M, Imberty A. Proteins 58 735-746 (2005)
  8. The 1.9 A structure of alpha-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Garman SC, Hannick L, Zhu A, Garboczi DN. Structure 10 425-434 (2002)
  9. Crystal structure of alpha-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. Golubev AM, Nagem RA, Brandão Neto JR, Neustroev KN, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Savel'ev AN, Polikarpov I. J Mol Biol 339 413-422 (2004)
  10. Identification of common structural features of binding sites in galactose-specific proteins. Sujatha MS, Balaji PV. Proteins 55 44-65 (2004)
  11. The major royal jelly proteins 8 and 9 (Api m 11) are glycosylated components of Apis mellifera venom with allergenic potential beyond carbohydrate-based reactivity. Blank S, Bantleon FI, McIntyre M, Ollert M, Spillner E. Clin Exp Allergy 42 976-985 (2012)
  12. A new lectin family with structure similarity to actinoporins revealed by the crystal structure of Xerocomus chrysenteron lectin XCL. Birck C, Damian L, Marty-Detraves C, Lougarre A, Schulze-Briese C, Koehl P, Fournier D, Paquereau L, Samama JP. J Mol Biol 344 1409-1420 (2004)
  13. Isolectins I-A and I-B of Griffonia (Bandeiraea) simplicifolia. Crystal structure of metal-free GS I-B(4) and molecular basis for metal binding and monosaccharide specificity. Lescar J, Loris R, Mitchell E, Gautier C, Chazalet V, Cox V, Wyns L, Pérez S, Breton C, Imberty A. J Biol Chem 277 6608-6614 (2002)
  14. Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation. Bakkers MJ, Zeng Q, Feitsma LJ, Hulswit RJ, Li Z, Westerbeke A, van Kuppeveld FJ, Boons GJ, Langereis MA, Huizinga EG, de Groot RJ. Proc Natl Acad Sci U S A 113 E3111-9 (2016)
  15. The crystal structure of a plant lectin in complex with the Tn antigen. Babino A, Tello D, Rojas A, Bay S, Osinaga E, Alzari PM. FEBS Lett 536 106-110 (2003)
  16. High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2'-alpha-L-fucosyllactose and correlation with thermodynamic binding data. Svensson C, Teneberg S, Nilsson CL, Kjellberg A, Schwarz FP, Sharon N, Krengel U. J Mol Biol 321 69-83 (2002)
  17. High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile β-trefoil lectin domain from the mushroom Laetiporus sulphureus. Angulo I, Acebrón I, de las Rivas B, Muñoz R, Rodríguez-Crespo I, Menéndez M, García P, Tateno H, Goldstein IJ, Pérez-Agote B, Mancheño JM. Glycobiology 21 1349-1361 (2011)
  18. Intramolecular carbohydrate-aromatic interactions and intermolecular van der Waals interactions enhance the molecular recognition ability of GM1 glycomimetics for cholera toxin. Bernardi A, Arosio D, Potenza D, Sánchez-Medina I, Mari S, Cañada FJ, Jiménez-Barbero J. Chemistry 10 4395 (2004)
  19. Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules. Flint J, Bolam DN, Nurizzo D, Taylor EJ, Williamson MP, Walters C, Davies GJ, Gilbert HJ. J Biol Chem 280 23718-23726 (2005)
  20. Crystal structures of the peanut lectin-lactose complex at acidic pH: retention of unusual quaternary structure, empty and carbohydrate bound combining sites, molecular mimicry and crystal packing directed by interactions at the combining site. Ravishankar R, Thomas CJ, Suguna K, Surolia A, Vijayan M. Proteins 43 260-270 (2001)
  21. Influence of glycosidic linkage on the nature of carbohydrate binding in beta-prism I fold lectins: an X-ray and molecular dynamics investigation on banana lectin-carbohydrate complexes. Sharma A, Vijayan M. Glycobiology 21 23-33 (2011)
  22. Multiplicity of carbohydrate-binding sites in beta-prism fold lectins: occurrence and possible evolutionary implications. Sharma A, Chandran D, Singh DD, Vijayan M. J Biosci 32 1089-1110 (2007)
  23. Mapping glycoconjugate-mediated interactions of marine Bacteroidetes with diatoms. Bennke CM, Neu TR, Fuchs BM, Amann R. Syst Appl Microbiol 36 417-425 (2013)
  24. Structure of a legume lectin from the bark of Robinia pseudoacacia and its complex with N-acetylgalactosamine. Rabijns A, Verboven C, Rougé P, Barre A, Van Damme EJ, Peumans WJ, De Ranter CJ. Proteins 44 470-478 (2001)
  25. Carbohydrate specificity and salt-bridge mediated conformational change in acidic winged bean agglutinin. Manoj N, Srinivas VR, Surolia A, Vijayan M, Suguna K. J Mol Biol 302 1129-1137 (2000)
  26. Stereochemical metrics of lectin-carbohydrate interactions: comparison with protein-protein interfaces. García-Hernández E, Zubillaga RA, Rodríguez-Romero A, Hernández-Arana A. Glycobiology 10 993-1000 (2000)
  27. A Gibbs free energy correlation for automated docking of carbohydrates. Hill AD, Reilly PJ. J Comput Chem 29 1131-1141 (2008)
  28. Conformational choice and selectivity in singly and multiply hydrated monosaccharides in the gas phase. Cocinero EJ, Stanca-Kaposta EC, Scanlan EM, Gamblin DP, Davis BG, Simons JP. Chemistry 14 8947-8955 (2008)
  29. Engineering O-glycosylation points in non-extended peptides: implications for the molecular recognition of short tumor-associated glycopeptides. Corzana F, Busto JH, Marcelo F, García de Luis M, Asensio JL, Martín-Santamaría S, Jiménez-Barbero J, Avenoza A, Peregrina JM. Chemistry 17 3105-3110 (2011)
  30. Ganglioside GM1 mimics: lipophilic substituents improve affinity for cholera toxin. Arosio D, Baretti S, Cattaldo S, Potenza D, Bernardi A. Bioorg Med Chem Lett 13 3831-3834 (2003)
  31. Leaves of the Lamiaceae species Glechoma hederacea (ground ivy) contain a lectin that is structurally and evolutionary related to the legume lectins. Wang W, Peumans WJ, Rougé P, Rossi C, Proost P, Chen J, Van Damme EJ. Plant J 33 293-304 (2003)
  32. Rational design of a Tn antigen mimic. Corzana F, Busto JH, Marcelo F, de Luis MG, Asensio JL, Martín-Santamaría S, Sáenz Y, Torres C, Jiménez-Barbero J, Avenoza A, Peregrina JM. Chem Commun (Camb) 47 5319-5321 (2011)
  33. Structure/thermodynamics relationships of lectin-saccharide complexes: the Erythrina corallodendron case. Bradbrook GM, Forshaw JR, Pérez S. Eur J Biochem 267 4545-4555 (2000)
  34. Determination of thermodynamic parameters of Xerocomus chrysenteron lectin interactions with N-acetylgalactosamine and Thomsen-Friedenreich antigen by isothermal titration calorimetry. Damian L, Fournier D, Winterhalter M, Paquereau L. BMC Biochem 6 11 (2005)
  35. Probing genetic variation and glycoform distribution in lectins of the Erythrina genus by mass spectrometry. Bonneil E, Young NM, Lis H, Sharon N, Thibault P. Arch Biochem Biophys 426 241-249 (2004)
  36. Purification, some properties of a D-galactose-binding leaf lectin from Erythrina indica and further characterization of seed lectin. Konozy EH, Mulay R, Faca V, Ward RJ, Greene LJ, Roque-Barriera MC, Sabharwal S, Bhide SV. Biochimie 84 1035-1043 (2002)
  37. Organization and dynamics of tryptophan residues in tetrameric and monomeric soybean agglutinin: studies by steady-state and time-resolved fluorescence, phosphorescence and chemical modification. Molla AR, Maity SS, Ghosh S, Mandal DK. Biochimie 91 857-867 (2009)
  38. Effect of glycosylation on the structure of Erythrina corallodendron lectin. Kulkarni KA, Srivastava A, Mitra N, Sharon N, Surolia A, Vijayan M, Suguna K. Proteins 56 821-827 (2004)
  39. Experimental evaluation of CH-π interactions in a protein core. Pace CJ, Kim D, Gao J. Chemistry 18 5832-5836 (2012)
  40. Chemical characteristics of dimer interfaces in the legume lectin family. Elgavish S, Shaanan B. Protein Sci 10 753-761 (2001)
  41. Purification, characterization, and preliminary X-ray diffraction analysis of a lactose-specific lectin from Cymbosema roseum seeds. Rocha BA, Moreno FB, Delatorre P, Souza EP, Marinho ES, Benevides RG, Rustiguel JK, Souza LA, Nagano CS, Debray H, Sampaio AH, de Azevedo WF, Cavada BS. Appl Biochem Biotechnol 152 383-393 (2009)
  42. α-N-Linked glycopeptides: conformational analysis and bioactivity as lectin ligands. Marcelo F, Cañada FJ, André S, Colombo C, Doro F, Gabius HJ, Bernardi A, Jiménez-Barbero J. Org Biomol Chem 10 5916-5923 (2012)
  43. Carbohydrate decoration of microporous polypropylene membranes for lectin affinity adsorption: comparison of mono- and disaccharides. Hu MX, Xu ZK. Colloids Surf B Biointerfaces 85 19-25 (2011)
  44. PAN-modular structure of microneme protein SML-2 from the parasite Sarcocystis muris at 1.95 Å resolution and its complex with 1-thio-β-D-galactose. Müller JJ, Weiss MS, Heinemann U. Acta Crystallogr D Biol Crystallogr 67 936-944 (2011)
  45. Experimental evidence for CH⋯π interaction-mediated stabilization of the square form in phenylglycine-incorporated ascidiacyclamide. Asano A, Minoura K, Yamada T, Doi M. RSC Adv 13 2458-2466 (2023)
  46. Synthesis and binding to plant lectins of sulfur-containing analogues of betaGal1,3 alphaGalNAc (T-antigen). Streicher H, Schmid W, Wenzl I, Fiedler C, Kählig H, Unger FM. Bioorg Med Chem Lett 10 1369-1371 (2000)