1amy Citations

Crystal and molecular structure of barley alpha-amylase.

J Mol Biol 239 104-21 (1994)
Cited: 103 times
EuropePMC logo PMID: 8196040

Abstract

The three-dimensional structure of barley malt alpha-amylase (isoform AMY2-2) was determined by multiple isomorphous replacement using three heavy-atom derivatives and solvent flattening. The model was refined using a combination of simulated annealing and conventional restrained least-squares crystallographic refinement to an R-factor of 0.153 based on 18,303 independent reflections with F(o) > sigma(F(o)) between 10 and 2.8 A resolution, with root-mean-square deviations of 0.016 A and 3.3 degrees from ideal bond lengths and bond angles, respectively. The final model consists of 403 amino acid residues, three calcium ions and 153 water molecules. The polypeptide chain folds into three domains: a central domain forming a (beta alpha)8-barrel of 286 residues, with a protruding irregular structured loop domain of 64 residues (domain B) connecting strand beta 3 and helix alpha 3 of the barrel, and a C-terminal domain of 53 residues forming a five stranded anti-parallel beta-sheet. Unlike the previously known alpha-amylase structures, AMY2-2 contains three Ca2+ binding sites co-ordinated by seven or eight oxygen atoms from carboxylate groups, main-chain carbonyl atoms and water molecules, all calcium ions being bound to domain B and therefore essential for the structural integrity of that domain. Two of the Ca2+ sites are located only 7.0 A apart with one Asp residue serving as ligand for both. One Ca2+ site located at about 20 A from the other two was found to be exchangeable with Eu3+. By homology with other alpha-amylases, some important active site residues are identified as Asp179, Glu204 and Asp289, and are situated at the C-terminal end of the central beta-barrel. A starch granule binding site, previously identified as Trp276 and Trp277, is situated on alpha-helix 6 in the central (beta alpha)8-barrel, at the surface of the enzyme. This binding site region is associated with a considerable disruption of the (beta alpha)8-barrel 8-fold symmetry.

Articles - 1amy mentioned but not cited (9)

  1. Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. de Souza SJ, Long M, Klein RJ, Roy S, Lin S, Gilbert W. Proc Natl Acad Sci U S A 95 5094-5099 (1998)
  2. Intron positions correlate with module boundaries in ancient proteins. de Souza SJ, Long M, Schoenbach L, Roy SW, Gilbert W. Proc Natl Acad Sci U S A 93 14632-14636 (1996)
  3. Structural and mechanistic studies of chloride induced activation of human pancreatic alpha-amylase. Maurus R, Begum A, Kuo HH, Racaza A, Numao S, Andersen C, Tams JW, Vind J, Overall CM, Withers SG, Brayer GD. Protein Sci 14 743-755 (2005)
  4. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat. Zhang Q, Li C. Front Plant Sci 8 1727 (2017)
  5. Structural organization and functional divergence of high isoelectric point α-amylase genes in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Ju L, Deng G, Liang J, Zhang H, Li Q, Pan Z, Yu M, Long H. BMC Genet 20 25 (2019)
  6. Defining structural and evolutionary modules in proteins: a community detection approach to explore sub-domain architecture. Hleap JS, Susko E, Blouin C. BMC Struct Biol 13 20 (2013)
  7. The geometry of Niggli reduction: SAUC - search of alternative unit cells. McGill KJ, Asadi M, Karakasheva MT, Andrews LC, Bernstein HJ. J Appl Crystallogr 47 360-364 (2014)
  8. Recombinant expression, purification, and characterization of an α-amylase from Massilia timonae. Tagomori BY, Dos Santos FC, Barbosa-Tessmann IP. 3 Biotech 11 13 (2021)
  9. Structures of two novel crystal forms of Aspergillus oryzae alpha amylase (taka-amylase). Gee CL, Holton JM, McPherson A. J Biosci Bioeng 131 605-612 (2021)


Reviews citing this publication (12)

  1. Mechanisms of enzymatic glycoside hydrolysis. McCarter JD, Withers SG. Curr Opin Struct Biol 4 885-892 (1994)
  2. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. MacGregor EA, Janecek S, Svensson B. Biochim Biophys Acta 1546 1-20 (2001)
  3. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Janeček Š, Svensson B, MacGregor EA. Cell Mol Life Sci 71 1149-1170 (2014)
  4. Geometry of nonbonded interactions involving planar groups in proteins. Chakrabarti P, Bhattacharyya R. Prog Biophys Mol Biol 95 83-137 (2007)
  5. The functions of 4-alpha-glucanotransferases and their use for the production of cyclic glucans. Takaha T, Smith SM. Biotechnol Genet Eng Rev 16 257-280 (1999)
  6. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Janeček Š, Gabriško M. Cell Mol Life Sci 73 2707-2725 (2016)
  7. Parallel beta/alpha-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of beta-amylase: evolutionary distance is a reflection of unrelated sequences. Janecek S. FEBS Lett 353 119-123 (1994)
  8. Implication for buried polar contacts and ion pairs in hyperthermostable enzymes. Matsui I, Harata K. FEBS J 274 4012-4022 (2007)
  9. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors. Kaur R, Kaur N, Gupta AK. Pestic Biochem Physiol 116 83-93 (2014)
  10. Structural biology of starch-degrading enzymes and their regulation. Møller MS, Svensson B. Curr Opin Struct Biol 40 33-42 (2016)
  11. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Okuyama M, Saburi W, Mori H, Kimura A. Cell Mol Life Sci 73 2727-2751 (2016)
  12. Aspects and Recent Trends in Microbial α-Amylase: a Review. Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Appl Biochem Biotechnol 193 2649-2698 (2021)

Articles citing this publication (82)

  1. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y. J Mol Biol 269 142-153 (1997)
  2. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Brayer GD, Luo Y, Withers SG. Protein Sci 4 1730-1742 (1995)
  3. Structures of the psychrophilic Alteromonas haloplanctis alpha-amylase give insights into cold adaptation at a molecular level. Aghajari N, Feller G, Gerday C, Haser R. Structure 6 1503-1516 (1998)
  4. Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Machius M, Declerck N, Huber R, Wiegand G. Structure 6 281-292 (1998)
  5. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. Yamamoto K, Miyake H, Kusunoki M, Osaki S. FEBS J 277 4205-4214 (2010)
  6. A circularly permuted alpha-amylase-type alpha/beta-barrel structure in glucan-synthesizing glucosyltransferases. MacGregor EA, Jespersen HM, Svensson B. FEBS Lett 378 263-266 (1996)
  7. Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Aghajari N, Feller G, Gerday C, Haser R. Protein Sci 7 564-572 (1998)
  8. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis. Kadziola A, Søgaard M, Svensson B, Haser R. J Mol Biol 278 205-217 (1998)
  9. The structure of barley alpha-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Robert X, Haser R, Gottschalk TE, Ratajczak F, Driguez H, Svensson B, Aghajari N. Structure 11 973-984 (2003)
  10. Three-dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. Katsuya Y, Mezaki Y, Kubota M, Matsuura Y. J Mol Biol 281 885-897 (1998)
  11. Functional sites in protein families uncovered via an objective and automated graph theoretic approach. Wangikar PP, Tendulkar AV, Ramya S, Mali DN, Sarawagi S. J Mol Biol 326 955-978 (2003)
  12. Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Gilles C, Astier JP, Marchis-Mouren G, Cambillau C, Payan F. Eur J Biochem 238 561-569 (1996)
  13. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose. Fujimoto Z, Takase K, Doui N, Momma M, Matsumoto T, Mizuno H. J Mol Biol 277 393-407 (1998)
  14. The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 A resolution. Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaïch JP, Driguez H, Haser R. EMBO J 17 5551-5562 (1998)
  15. Barley alpha-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 A resolution. Vallée F, Kadziola A, Bourne Y, Juy M, Rodenburg KW, Svensson B, Haser R. Structure 6 649-659 (1998)
  16. Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. Kamitori S, Kondo S, Okuyama K, Yokota T, Shimura Y, Tonozuka T, Sakano Y. J Mol Biol 287 907-921 (1999)
  17. Crystal structure of yellow meal worm alpha-amylase at 1.64 A resolution. Strobl S, Maskos K, Betz M, Wiegand G, Huber R, Gomis-Rüth FX, Glockshuber R. J Mol Biol 278 617-628 (1998)
  18. Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain. Janecek S, Svensson B, MacGregor EA. Eur J Biochem 270 635-645 (2003)
  19. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution. Qian M, Haser R, Payan F. Protein Sci 4 747-755 (1995)
  20. Crystal structure of amylomaltase from thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans. Przylas I, Tomoo K, Terada Y, Takaha T, Fujii K, Saenger W, Sträter N. J Mol Biol 296 873-886 (2000)
  21. The three-dimensional structure of 6-phospho-beta-galactosidase from Lactococcus lactis. Wiesmann C, Beste G, Hengstenberg W, Schulz GE. Structure 3 961-968 (1995)
  22. Knowledge-based model of a glucosyltransferase from the oral bacterial group of mutans streptococci. Devulapalle KS, Goodman SD, Gao Q, Hemsley A, Mooser G. Protein Sci 6 2489-2493 (1997)
  23. Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Allouch J, Helbert W, Henrissat B, Czjzek M. Structure 12 623-632 (2004)
  24. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon. Tyler L, Bragg JN, Wu J, Yang X, Tuskan GA, Vogel JP. BMC Genomics 11 600 (2010)
  25. Structures of human pancreatic α-amylase in complex with acarviostatins: Implications for drug design against type II diabetes. Qin X, Ren L, Yang X, Bai F, Wang L, Geng P, Bai G, Shen Y. J Struct Biol 174 196-202 (2011)
  26. Substrate recognition mechanism of alpha-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, Kimura A. J Mol Biol 378 913-922 (2008)
  27. Evolution of alpha-amylases: architectural features and key residues in the stabilization of the (beta/alpha)(8) scaffold. Pujadas G, Palau J. Mol Biol Evol 18 38-54 (2001)
  28. Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R. J Mol Biol 375 499-510 (2008)
  29. The roles of the N-linked carbohydrate chain of rice alpha-amylase in thermostability and enzyme kinetics. Terashima M, Kubo A, Suzawa M, Itoh Y, Katoh S. Eur J Biochem 226 249-254 (1994)
  30. Cloning, mutagenesis, and structural analysis of human pancreatic alpha-amylase expressed in Pichia pastoris. Rydberg EH, Sidhu G, Vo HC, Hewitt J, Côte HC, Wang Y, Numao S, MacGillivray RT, Overall CM, Brayer GD, Withers SG. Protein Sci 8 635-643 (1999)
  31. On the mechanism of alpha-amylase. Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V. Eur J Biochem 270 3871-3879 (2003)
  32. The mechanism of porcine pancreatic alpha-amylase. Kinetic evidence for two additional carbohydrate-binding sites. Alkazaz M, Desseaux V, Marchis-Mouren G, Payan F, Forest E, Santimone M. Eur J Biochem 241 787-796 (1996)
  33. Crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus. Feese MD, Kato Y, Tamada T, Kato M, Komeda T, Miura Y, Hirose M, Hondo K, Kobayashi K, Kuroki R. J Mol Biol 301 451-464 (2000)
  34. Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins. Vester-Christensen MB, Abou Hachem M, Svensson B, Henriksen A. J Mol Biol 403 739-750 (2010)
  35. Letter Characteristic differences in the primary structure allow discrimination of cyclodextrin glucanotransferases from alpha-amylases. Janecek S, MacGregor EA, Svensson B. Biochem J 305 ( Pt 2) 685-686 (1995)
  36. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Hostinová E, Solovicová A, Dvorský R, Gasperík J. Arch Biochem Biophys 411 189-195 (2003)
  37. Covalent and three-dimensional structure of the cyclodextrinase from Flavobacterium sp. no. 92. Fritzsche HB, Schwede T, Schulz GE. Eur J Biochem 270 2332-2341 (2003)
  38. Crystal structures of a mutant maltotetraose-forming exo-amylase cocrystallized with maltopentaose. Yoshioka Y, Hasegawa K, Matsuura Y, Katsube Y, Kubota M. J Mol Biol 271 619-628 (1997)
  39. Calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase determined by inactivation kinetics. Tanaka A, Hoshino E. Biochem J 364 635-639 (2002)
  40. Crystal structure of a maltotetraose-forming exo-amylase from Pseudomonas stutzeri. Morishita Y, Hasegawa K, Matsuura Y, Katsube Y, Kubota M, Sakai S. J Mol Biol 267 661-672 (1997)
  41. Roles of catalytic residues in alpha-amylases as evidenced by the structures of the product-complexed mutants of a maltotetraose-forming amylase. Hasegawa K, Kubota M, Matsuura Y. Protein Eng 12 819-824 (1999)
  42. Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments. Yue C, Cao H, Lin H, Hu J, Ye Y, Li J, Hao Z, Hao X, Sun Y, Yang Y, Wang X. Planta 250 281-298 (2019)
  43. Secondary calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase obtained from inhibition kinetics. Tanaka A, Hoshino E. J Biosci Bioeng 96 262-267 (2003)
  44. Spatio-temporal profiling and degradation of alpha-amylase isozymes during barley seed germination. Bak-Jensen KS, Laugesen S, Ostergaard O, Finnie C, Roepstorff P, Svensson B. FEBS J 274 2552-2565 (2007)
  45. Structural base for enzymatic cyclodextrin hydrolysis. Buedenbender S, Schulz GE. J Mol Biol 385 606-617 (2009)
  46. Isozyme hybrids within the protruding third loop domain of the barley alpha-amylase (beta/alpha)8-barrel. Implication for BASI sensitivity and substrate affinity. Juge N, Rodenburg KW, Guo XJ, Chaix JC, Svensson B. FEBS Lett 363 299-303 (1995)
  47. Crystal structure of maltooligosyltrehalose trehalohydrolase from Deinococcus radiodurans in complex with disaccharides. Timmins J, Leiros HK, Leonard G, Leiros I, McSweeney S. J Mol Biol 347 949-963 (2005)
  48. Subsite mapping of porcine pancreatic alpha-amylase I and II using 4-nitrophenyl-alpha-maltooligosaccharides. Ajandouz EH, Marchis-Mouren GJ. Carbohydr Res 268 267-277 (1995)
  49. Crystal structure of α-amylase from Oryza sativa: molecular insights into enzyme activity and thermostability. Ochiai A, Sugai H, Harada K, Tanaka S, Ishiyama Y, Ito K, Tanaka T, Uchiumi T, Taniguchi M, Mitsui T. Biosci Biotechnol Biochem 78 989-997 (2014)
  50. Elucidation of the subsite structure of bacterial saccharifying alpha-amylase and its mode of degradation of maltose. Suganuma T, Ohnishi M, Hiromi K, Nagahama T. Carbohydr Res 282 171-180 (1996)
  51. Specific inhibition of barley alpha-amylase 2 by barley alpha-amylase/subtilisin inhibitor depends on charge interactions and can be conferred to isozyme 1 by mutation. Rodenburg KW, Vallée F, Juge N, Aghajari N, Guo X, Haser R, Svensson B. Eur J Biochem 267 1019-1029 (2000)
  52. Amylose chain behavior in an interacting context. III. Complete occupancy of the AMY2 barley alpha-amylase cleft and comparison with biochemical data. André G, Buléon A, Haser R, Tran V. Biopolymers 50 751-762 (1999)
  53. Modulation of activity and substrate binding modes by mutation of single and double subsites +1/+2 and -5/-6 of barley alpha-amylase 1. Mori H, Bak-Jensen KS, Gottschalk TE, Motawia MS, Damager I, Møller BL, Svensson B. Eur J Biochem 268 6545-6558 (2001)
  54. Molecular modelling of the interaction between the catalytic site of pig pancreatic alpha-amylase and amylose fragments. Casset F, Imberty A, Haser R, Payan F, Perez S. Eur J Biochem 232 284-293 (1995)
  55. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation. Raul D, Biswas T, Mukhopadhyay S, Kumar Das S, Gupta S. Biochem Res Int 2014 568141 (2014)
  56. Stability and catalytic activity of alpha-amylase from barley malt at different pressure-temperature conditions. Buckow R, Weiss U, Heinz V, Knorr D. Biotechnol Bioeng 97 1-11 (2007)
  57. Alpha-amylase from mung beans (Vigna radiata)--correlation of biochemical properties and tertiary structure by homology modelling. Tripathi P, Lo Leggio L, Mansfeld J, Ulbrich-Hofmann R, Kayastha AM. Phytochemistry 68 1623-1631 (2007)
  58. Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium. Jones RA, Jermiin LS, Easteal S, Patel BK, Beacham IR. J Appl Microbiol 86 93-107 (1999)
  59. Barley alpha-amylase Met53 situated at the high-affinity subsite -2 belongs to a substrate binding motif in the beta-->alpha loop 2 of the catalytic (beta/alpha)8-barrel and is critical for activity and substrate specificity. Mori H, Bak-Jensen KS, Svensson B. Eur J Biochem 269 5377-5390 (2002)
  60. Conformational stability and integrity of alpha-amylase from mung beans: evidence of kinetic intermediate in GdmCl-induced unfolding. Tripathi P, Hofmann H, Kayastha AM, Ulbrich-Hofmann R. Biophys Chem 137 95-99 (2008)
  61. Structural studies of a Phe256Trp mutant of human salivary alpha-amylase: implications for the role of a conserved water molecule in enzyme activity. Ramasubbu N, Sundar K, Ragunath C, Rafi MM. Arch Biochem Biophys 421 115-124 (2004)
  62. A novel alpha-amylase gene is transiently upregulated during low temperature exposure in apple fruit. Wegrzyn T, Reilly K, Cipriani G, Murphy P, Newcomb R, Gardner R, MacRae E. Eur J Biochem 267 1313-1322 (2000)
  63. Arg-27, Arg-127 and Arg-155 in the beta-trefoil protein barley alpha-amylase/subtilisin inhibitor are interface residues in the complex with barley alpha-amylase 2. Rodenburg KW, Várallyay E, Svendsen I, Svensson B. Biochem J 309 ( Pt 3) 969-976 (1995)
  64. Isolation and characterization of an alpha-amylase gene in cassava (Manihot esculenta). Tangphatsornruang S, Naconsie M, Thammarongtham C, Narangajavana J. Plant Physiol Biochem 43 821-827 (2005)
  65. Nucleotide sequence, structural investigation and homology modeling studies of a Ca2+-independent alpha-amylase with acidic pH-profile. Sajedi RH, Taghdir M, Naderi-Manesh H, Khajeh K, Ranjbar B. J Biochem Mol Biol 40 315-324 (2007)
  66. Α-amylase from wheat (Triticum aestivum) seeds: its purification, biochemical attributes and active site studies. Singh K, Kayastha AM. Food Chem 162 1-9 (2014)
  67. In Vitro and In Silico Evaluation for the Inhibitory Action of O. basilicum Methanol Extract on α-Glucosidase and α-Amylase. Shanak S, Bassalat N, Albzoor R, Kadan S, Zaid H. Evid Based Complement Alternat Med 2021 5515775 (2021)
  68. A functional raw starch-binding domain of barley alpha-amylase expressed in Escherichia coli. Tibbot BK, Wong DW, Robertson GH. J Protein Chem 19 663-669 (2000)
  69. Enhancement of the alcoholytic activity of alpha-amylase AmyA from Thermotoga maritima MSB8 (DSM 3109) by site-directed mutagenesis. Damián-Almazo JY, Moreno A, López-Munguía A, Soberón X, González-Muñoz F, Saab-Rincón G. Appl Environ Microbiol 74 5168-5177 (2008)
  70. Modification of alpha-amylase functions by protein engineering. Terashima M, Katoh S. Ann N Y Acad Sci 799 65-69 (1996)
  71. Study of the action of human salivary alpha-amylase on 2-chloro-4-nitrophenyl alpha-maltotrioside in the presence of potassium thiocyanate. Suganuma T, Maeda Y, Kitahara K, Nagahama T. Carbohydr Res 303 219-227 (1997)
  72. Optimization of Amylase Production from B. amyloliquefaciens (MTCC 1270) Using Solid State Fermentation. Saha K, Maity S, Roy S, Pahan K, Pathak R, Majumdar S, Gupta S. Int J Microbiol 2014 764046 (2014)
  73. Polysaccharide hydrolase folds diversity of structure and convergence of function. Himmel ME, Karplus PA, Sakon J, Adney WS, Baker JO, Thomas SR. Appl Biochem Biotechnol 63-65 315-325 (1997)
  74. Biased mutagenesis in the N-terminal region by degenerate oligonucleotide gene shuffling enhances secretory expression of barley alpha-amylase 2 in yeast. Fukuda K, Jensen MH, Haser R, Aghajari N, Svensson B. Protein Eng Des Sel 18 515-526 (2005)
  75. Isolation of a raw starch-binding fragment from barley alpha-amylase. Wong DW, Batt SB, Tibbot BK, Robertson GH. J Protein Chem 19 373-377 (2000)
  76. The amino acid sequence of pancreatic alpha-amylase from the ostrich, Struthio camelus. Kabuto S, Ogawa T, Muramoto K, Oosthuizen V, Naude RJ. Comp Biochem Physiol B Biochem Mol Biol 127 481-490 (2000)
  77. Molecular characterization of the Thermomonospora curvata aglA gene encoding a thermotolerant alpha-1,4-glucosidase. Janda L, Damborský J, Petrícek M, Spízek J, Tichý P. J Appl Microbiol 88 773-783 (2000)
  78. Putative implication of alpha-amylase loop 7 in the mechanism of substrate binding and reaction products release. André G, Tran V. Biopolymers 75 95-108 (2004)
  79. BoGH13ASus from Bacteroides ovatus represents a novel α-amylase used for  Bacteroides starch breakdown in the human gut. Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. Cell Mol Life Sci 80 232 (2023)
  80. Crystallization and preliminary crystallographic analysis of an amylopullulanase from the hyperthermophilic archaeon Pyrococcus woesei. Knapp S, Rüdiger A, Antranikian G, Jorgensen PL, Ladenstein R. Proteins 23 595-597 (1995)
  81. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes. Kashani-Amin E, Ebrahim-Habibi A, Larijani B, Moosavi-Movahedi AA. J Mol Recognit 28 605-613 (2015)
  82. Structural and Functional Characterization of Drosophila melanogaster α-Amylase. Rhimi M, Da Lage JL, Haser R, Feller G, Aghajari N. Molecules 28 5327 (2023)


Related citations provided by authors (2)