1afw Citations

The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism.

Abstract

The dimeric, peroxisomal 3-ketoacyl-CoA thiolase catalyses the conversion of 3-ketoacyl-CoA into acyl-CoA, which is shorter by two carbon atoms. This reaction is the last step of the beta-oxidation pathway. The crystal structure of unliganded peroxisomal thiolase of the yeast Saccharomyces cerevisiae has been refined at 1.8 A resolution. An unusual feature of this structure is the presence of two helices, completely buried in the dimer and sandwiched between two beta-sheets. The analysis of the structure shows that the sequences of these helices are not hydrophobic, but generate two amphipathic helices. The helix in the N-terminal domain exposes the polar side-chains to a cavity at the dimer interface, filled with structured water molecules. The central helix in the C-terminal domain exposes its polar residues to an interior polar pocket. The refined structure has also been used to predict the mode of binding of the substrate molecule acetoacetyl-CoA, as well as the reaction mechanism. From previous studies it is known that Cys125, His375 and Cys403 are important catalytic residues. In the proposed model the acetoacetyl group fits near the two catalytic cysteine residues, such that the oxygen atoms point towards the protein interior. The distance between SG(Cys125) and C3(acetoacetyl-CoA) is 3.7 A. The O2 atom of the docked acetoacetyl group makes a hydrogen bond to N(Gly405), which would favour the formation of the covalent bond between SG(Cys125) and C3(acetoacetyl-CoA) of the intermediate complex of the two-step reaction. The CoA moiety is proposed to bind in a groove on the surface of the protein molecule. Most of the interactions of the CoA molecule are with atoms of the loop domain. The three phosphate groups of the CoA moiety are predicted to interact with side-chains of lysine and arginine residues, which are conserved in the dimeric thiolases.

Articles - 1afw mentioned but not cited (13)

  1. Conservation and relative importance of residues across protein-protein interfaces. Guharoy M, Chakrabarti P. Proc Natl Acad Sci U S A 102 15447-15452 (2005)
  2. Identification of protein oligomerization states by analysis of interface conservation. Elcock AH, McCammon JA. Proc Natl Acad Sci U S A 98 2990-2994 (2001)
  3. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. Petrova NV, Wu CH. BMC Bioinformatics 7 312 (2006)
  4. Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex. Ishikawa M, Tsuchiya D, Oyama T, Tsunaka Y, Morikawa K. EMBO J 23 2745-2754 (2004)
  5. Multiple subunit fitting into a low-resolution density map of a macromolecular complex using a gaussian mixture model. Kawabata T. Biophys J 95 4643-4658 (2008)
  6. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  7. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. Pye VE, Christensen CE, Dyer JH, Arent S, Henriksen A. J Biol Chem 285 24078-24088 (2010)
  8. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function. Almonacid DE, Yera ER, Mitchell JB, Babbitt PC. PLoS Comput Biol 6 e1000700 (2010)
  9. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities. Kiema TR, Harijan RK, Strozyk M, Fukao T, Alexson SE, Wierenga RK. Acta Crystallogr D Biol Crystallogr 70 3212-3225 (2014)
  10. A fast mathematical programming procedure for simultaneous fitting of assembly components into cryoEM density maps. Zhang S, Vasishtan D, Xu M, Topf M, Alber F. Bioinformatics 26 i261-8 (2010)
  11. Coenzyme A-free activity, crystal structure, and rational engineering of a promiscuous β-ketoacyl thiolase from Ralstonia eutropha. Fage CD, Meinke JL, Keatinge-Clay AT. J Mol Catal B Enzym 121 113-121 (2015)
  12. Crystal structure of a monomeric thiolase-like protein type 1 (TLP1) from Mycobacterium smegmatis. Janardan N, Harijan RK, Wierenga RK, Murthy MR. PLoS One 7 e41894 (2012)
  13. Genome-wide identification and analysis of the thiolase family in insects. Fang SM. PeerJ 8 e10393 (2020)


Reviews citing this publication (6)

  1. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A. FEMS Microbiol Rev 27 35-64 (2003)
  2. Forty years of bacterial fatty acid synthesis. Rock CO, Jackowski S. Biochem Biophys Res Commun 292 1155-1166 (2002)
  3. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Haapalainen AM, Meriläinen G, Wierenga RK. Trends Biochem Sci 31 64-71 (2006)
  4. The structures and physicochemical properties of organic cofactors in biocatalysis. Fischer JD, Holliday GL, Rahman SA, Thornton JM. J Mol Biol 403 803-824 (2010)
  5. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Lin CI, McCarty RM, Liu HW. Angew Chem Int Ed Engl 56 3446-3489 (2017)
  6. Two crystal structures of N-acetyltransferases reveal a new fold for CoA-dependent enzymes. Modis Y, Wierenga R. Structure 6 1345-1350 (1998)

Articles citing this publication (55)

  1. Multi-resolution contour-based fitting of macromolecular structures. Chacón P, Wriggers W. J Mol Biol 317 375-384 (2002)
  2. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Winter A, Krämer W, Werner FA, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R. Proc Natl Acad Sci U S A 99 9300-9305 (2002)
  3. Polygenic control of Caenorhabditis elegans fat storage. Mak HY, Nelson LS, Basson M, Johnson CD, Ruvkun G. Nat Genet 38 363-368 (2006)
  4. The 1.8 A crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from escherichia coli. Davies C, Heath RJ, White SW, Rock CO. Structure 8 185-195 (2000)
  5. Crystal structure of beta-ketoacyl-acyl carrier protein synthase II from E.coli reveals the molecular architecture of condensing enzymes. Huang W, Jia J, Edwards P, Dehesh K, Schneider G, Lindqvist Y. EMBO J 17 1183-1191 (1998)
  6. Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H. J Biol Chem 279 52961-52969 (2004)
  7. Carbohydrate binding, quaternary structure and a novel hydrophobic binding site in two legume lectin oligomers from Dolichos biflorus. Hamelryck TW, Loris R, Bouckaert J, Dao-Thi MH, Strecker G, Imberty A, Fernandez E, Wyns L, Etzler ME. J Mol Biol 286 1161-1177 (1999)
  8. The X-ray crystal structure of beta-ketoacyl [acyl carrier protein] synthase I. Olsen JG, Kadziola A, von Wettstein-Knowles P, Siggaard-Andersen M, Lindquist Y, Larsen S. FEBS Lett 460 46-52 (1999)
  9. Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein deficiency due to beta-subunit mutations. Spiekerkoetter U, Sun B, Khuchua Z, Bennett MJ, Strauss AW. Hum Mutat 21 598-607 (2003)
  10. Structures of beta-ketoacyl-acyl carrier protein synthase I complexed with fatty acids elucidate its catalytic machinery. Olsen JG, Kadziola A, von Wettstein-Knowles P, Siggaard-Andersen M, Larsen S. Structure 9 233-243 (2001)
  11. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. Modis Y, Wierenga RK. J Mol Biol 297 1171-1182 (2000)
  12. Crystal structure of the priming beta-ketosynthase from the R1128 polyketide biosynthetic pathway. Pan H, Tsai Sc, Meadows ES, Miercke LJ, Keatinge-Clay AT, O'Connell J, Khosla C, Stroud RM. Structure 10 1559-1568 (2002)
  13. Structures of type 2 peroxisomal targeting signals in two trypanosomatid aldolases. Chudzik DM, Michels PA, de Walque S, Hol WG. J Mol Biol 300 697-707 (2000)
  14. Roles of the active site water, histidine 303, and phenylalanine 396 in the catalytic mechanism of the elongation condensing enzyme of Streptococcus pneumoniae. Zhang YM, Hurlbert J, White SW, Rock CO. J Biol Chem 281 17390-17399 (2006)
  15. The crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Synechocystis sp. at 1.54 A resolution and its relationship to other condensing enzymes. Moche M, Dehesh K, Edwards P, Lindqvist Y. J Mol Biol 305 491-503 (2001)
  16. Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate. Bera AK, Atanasova V, Robinson H, Eisenstein E, Coleman JP, Pesci EC, Parsons JF. Biochemistry 48 8644-8655 (2009)
  17. A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Modis Y, Wierenga RK. Structure 7 1279-1290 (1999)
  18. The 1.3-Angstrom-resolution crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Streptococcus pneumoniae. Price AC, Rock CO, White SW. J Bacteriol 185 4136-4143 (2003)
  19. 2,4,6-trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum. Watrous MM, Clark S, Kutty R, Huang S, Rudolph FB, Hughes JB, Bennett GN. Appl Environ Microbiol 69 1542-1547 (2003)
  20. Distinct Pores for Peroxisomal Import of PTS1 and PTS2 Proteins. Montilla-Martinez M, Beck S, Klümper J, Meinecke M, Schliebs W, Wagner R, Erdmann R. Cell Rep 13 2126-2134 (2015)
  21. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. Kursula P, Sikkilä H, Fukao T, Kondo N, Wierenga RK. J Mol Biol 347 189-201 (2005)
  22. Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases. Blacklock BJ, Jaworski JG. Eur J Biochem 269 4789-4798 (2002)
  23. FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis. Schaefer CM, Lu R, Nesbitt NM, Schiebel J, Sampson NS, Kisker C. Structure 23 21-33 (2015)
  24. Multi-resolution anchor-point registration of biomolecular assemblies and their components. Birmanns S, Wriggers W. J Struct Biol 157 271-280 (2007)
  25. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Kim S, Jang YS, Ha SC, Ahn JW, Kim EJ, Lim JH, Cho C, Ryu YS, Lee SK, Lee SY, Kim KJ. Nat Commun 6 8410 (2015)
  26. Characterization of six mutations in five Spanish patients with mitochondrial acetoacetyl-CoA thiolase deficiency: effects of amino acid substitutions on tertiary structure. Fukao T, Nakamura H, Nakamura K, Perez-Cerda C, Baldellou A, Barrionuevo CR, Castello FG, Kohno Y, Ugarte M, Kondo N. Mol Genet Metab 75 235-243 (2002)
  27. Evidence for catalytic cysteine-histidine dyad in chalcone synthase. Suh DY, Kagami J, Fukuma K, Sankawa U. Biochem Biophys Res Commun 275 725-730 (2000)
  28. Using reaction mechanism to measure enzyme similarity. O'Boyle NM, Holliday GL, Almonacid DE, Mitchell JB. J Mol Biol 368 1484-1499 (2007)
  29. Descriptor-based protein remote homology identification. Zhang Z, Kochhar S, Grigorov MG. Protein Sci 14 431-444 (2005)
  30. Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms. Medina-Cleghorn D, Bateman LA, Ford B, Heslin A, Fisher KJ, Dalvie ED, Nomura DK. Chem Biol 22 1394-1405 (2015)
  31. Identification, purification and characterization of an acetoacetyl-CoA thiolase from rat liver peroxisomes. Antonenkov VD, Croes K, Waelkens E, Van Veldhoven PP, Mannaerts GP. Eur J Biochem 267 2981-2990 (2000)
  32. Mutations in HADHB, which encodes the β-subunit of mitochondrial trifunctional protein, cause infantile onset hypoparathyroidism and peripheral polyneuropathy. Naiki M, Ochi N, Kato YS, Purevsuren J, Yamada K, Kimura R, Fukushi D, Hara S, Yamada Y, Kumagai T, Yamaguchi S, Wakamatsu N. Am J Med Genet A 164A 1180-1187 (2014)
  33. Targeted disruption of the peroxisomal thiolase B gene in mouse: a new model to study disorders related to peroxisomal lipid metabolism. Chevillard G, Clémencet MC, Latruffe N, Nicolas-Francès V. Biochimie 86 849-856 (2004)
  34. The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. Murakami-Sekimata A, Huang D, Piening BD, Bangur C, Paulovich AG. DNA Repair (Amst) 9 824-834 (2010)
  35. Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop. Harijan RK, Kiema TR, Karjalainen MP, Janardan N, Murthy MR, Weiss MS, Michels PA, Wierenga RK. Biochem J 455 119-130 (2013)
  36. The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation. Sundaramoorthy R, Micossi E, Alphey MS, Germain V, Bryce JH, Smith SM, Leonard GA, Hunter WN. J Mol Biol 359 347-357 (2006)
  37. A compound heterozygous mutation in HADHB gene causes an axonal Charcot-Marie-tooth disease. Hong YB, Lee JH, Park JM, Choi YR, Hyun YS, Yoon BR, Yoo JH, Koo H, Jung SC, Chung KW, Choi BO. BMC Med Genet 14 125 (2013)
  38. Expression and purification of His-tagged rat mitochondrial 3-ketoacyl-CoA thiolase wild-type and His352 mutant proteins. Zeng J, Li D. Protein Expr Purif 35 320-326 (2004)
  39. Discovery of pan autophagy inhibitors through a high-throughput screen highlights macroautophagy as an evolutionarily conserved process across 3 eukaryotic kingdoms. Mishra P, Dauphinee AN, Ward C, Sarkar S, Gunawardena AHLAN, Manjithaya R. Autophagy 13 1556-1572 (2017)
  40. A template search reveals mechanistic similarities and differences in beta-ketoacyl synthases (KAS) and related enzymes. Dawe JH, Porter CT, Thornton JM, Tabor AB. Proteins 52 427-435 (2003)
  41. Protein-protein interactions in the β-oxidation part of the phenylacetate utilization pathway: crystal structure of the PaaF-PaaG hydratase-isomerase complex. Grishin AM, Ajamian E, Zhang L, Rouiller I, Bostina M, Cygler M. J Biol Chem 287 37986-37996 (2012)
  42. A thermostable beta-ketothiolase of polyhydroxyalkanoates (PHAs) in Thermus thermophilus: purification and biochemical properties. Pantazaki AA, Ioannou AK, Kyriakidis DA. Mol Cell Biochem 269 27-36 (2005)
  43. A novel dual luciferase based high throughput assay to monitor autophagy in real time in yeast S. cerevisiae. Mishra P, Rai S, Manjithaya R. Biochem Biophys Rep 11 138-146 (2017)
  44. Comprehensive transcription analysis of human pathogenic fungus Penicillium marneffei in mycelial and yeast cells. Lin X, Ran Y, Gou L, He F, Zhang R, Wang P, Dai Y. Med Mycol 50 835-842 (2012)
  45. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production. Misra N, Patra MC, Panda PK, Sukla LB, Mishra BK. J Biomol Struct Dyn 31 241-257 (2013)
  46. The SCP2-thiolase-like protein (SLP) of Trypanosoma brucei is an enzyme involved in lipid metabolism. Harijan RK, Mazet M, Kiema TR, Bouyssou G, Alexson SE, Bergmann U, Moreau P, Michels PA, Bringaud F, Wierenga RK. Proteins 84 1075-1096 (2016)
  47. Cloning, expression, and purification of glyoxysomal 3-oxoacyl-CoA thiolase from sunflower cotyledons. Schiedel AC, Oeljeklaus S, Minihan P, Dyer JH. Protein Expr Purif 33 25-33 (2004)
  48. The native molecular size of alkyl-dihydroxyacetonephosphate synthase and dihydroxyacetonephosphate acyltransferase. Biermann J, Schoonderwoerd K, Hom ML, Luthjens LH, Van den Bosch H. Biochim Biophys Acta 1393 137-142 (1998)
  49. Structural basis for differentiation between two classes of thiolase: Degradative vs biosynthetic thiolase. Bhaskar S, Steer DL, Anand R, Panjikar S. J Struct Biol X 4 100018 (2020)
  50. Letter The role of OleA His285 in orchestration of long-chain acyl-coenzyme A substrates. Jensen MR, Goblirsch BR, Esler MA, Christenson JK, Mohamed FA, Wackett LP, Wilmot CM. FEBS Lett 592 987-998 (2018)
  51. Crystallographic substrate binding studies of Leishmania mexicana SCP2-thiolase (type-2): unique features of oxyanion hole-1. Harijan RK, Kiema TR, Syed SM, Qadir I, Mazet M, Bringaud F, Michels PAM, Wierenga RK. Protein Eng Des Sel 30 225-233 (2017)
  52. Structural characterization of a mitochondrial 3-ketoacyl-CoA (T1)-like thiolase from Mycobacterium smegmatis. Janardan N, Harijan RK, Kiema TR, Wierenga RK, Murthy MR. Acta Crystallogr D Biol Crystallogr 71 2479-2493 (2015)
  53. Peroxisomal KAT2 (3-ketoacyl-CoA thiolase 2) gene has a key role in gingerol biosynthesis in ginger (Zingiber officinale Rosc.). Sreeja S, Shylaja MR, Nazeem PA, Mathew D. J Plant Biochem Biotechnol 1-16 (2023)
  54. Peroxisome dynamics determines host-derived ROS accumulation and infectious growth of the rice blast fungus. Zhang J, Li H, Gu W, Zhang K, Liu X, Liu M, Yang L, Li G, Zhang Z, Zhang H. mBio e0238123 (2023)
  55. What can be lost? Genomic perspective on the lipid metabolism of Mucoromycota. Sokołowska B, Orłowska M, Okrasińska A, Piłsyk S, Pawłowska J, Muszewska A. IMA Fungus 14 22 (2023)