1a1g Citations

High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition.

Structure 6 451-64 (1998)
Related entries: 1a1f, 1a1h, 1a1i, 1a1j, 1a1k, 1a1l, 1aay, 1zaa

Cited: 111 times
EuropePMC logo PMID: 9562555

Abstract

Background

Zinc fingers of the Cys2-His2 class comprise one of the largest families of eukaryotic DNA-binding motifs and recognize a diverse set of DNA sequences. These proteins have a relatively simple modular structure and key base contacts are typically made by a few residues from each finger. These features make the zinc finger motif an attractive system for designing novel DNA-binding proteins and for exploring fundamental principles of protein-DNA recognition.

Results

Here we report the X-ray crystal structures of zinc finger-DNA complexes involving three variants of Zif268, with multiple changes in the recognition helix of finger one. We describe the structure of each of these three-finger peptides bound to its corresponding target site. To help elucidate the differential basis for site-specific recognition, the structures of four other complexes containing various combinations of these peptides with alternative binding sites have also been determined.

Conclusion

The protein-DNA contacts observed in these complexes reveal the basis for the specificity demonstrated by these Zif268 variants. Many, but not all, of the contacts can be rationalized in terms of a recognition code, but the predictive value of such a code is limited. The structures illustrate how modest changes in the docking arrangement accommodate the new sidechain-base and sidechain-phosphate interactions. Such adaptations help explain the versatility of naturally occurring zinc finger proteins and their utility in design.

Articles - 1a1g mentioned but not cited (7)

  1. DNA conformations and their sequence preferences. Svozil D, Kalina J, Omelka M, Schneider B. Nucleic Acids Res 36 3690-3706 (2008)
  2. Structure-based prediction of C2H2 zinc-finger binding specificity: sensitivity to docking geometry. Siggers TW, Honig B. Nucleic Acids Res 35 1085-1097 (2007)
  3. Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. Marathe A, Karandur D, Bansal M. BMC Struct Biol 9 24 (2009)
  4. An expanded binding model for Cys2His2 zinc finger protein-DNA interfaces. Persikov AV, Singh M. Phys Biol 8 035010 (2011)
  5. Theoretical study of rhenium dinuclear complexes: Re-Re bonding nature and electronic structure. Saito K, Nakao Y, Sato H, Sakaki S. J Phys Chem A 110 9710-9717 (2006)
  6. Investigating dynamic and energetic determinants of protein nucleic acid recognition: analysis of the zinc finger zif268-DNA complexes. Torella R, Moroni E, Caselle M, Morra G, Colombo G. BMC Struct Biol 10 42 (2010)
  7. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries. Pröpper K, Meindl K, Sammito M, Dittrich B, Sheldrick GM, Pohl E, Usón I. Acta Crystallogr D Biol Crystallogr 70 1743-1757 (2014)


Reviews citing this publication (21)

  1. DNA recognition by Cys2His2 zinc finger proteins. Wolfe SA, Nekludova L, Pabo CO. Annu Rev Biophys Biomol Struct 29 183-212 (2000)
  2. Origins of specificity in protein-DNA recognition. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu Rev Biochem 79 233-269 (2010)
  3. Design and selection of novel Cys2His2 zinc finger proteins. Pabo CO, Peisach E, Grant RA. Annu Rev Biochem 70 313-340 (2001)
  4. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Klug A. Annu Rev Biochem 79 213-231 (2010)
  5. Genome-editing Technologies for Gene and Cell Therapy. Maeder ML, Gersbach CA. Mol Ther 24 430-446 (2016)
  6. Supramolecular DNA recognition. Hannon MJ. Chem Soc Rev 36 280-295 (2007)
  7. KRAB zinc finger proteins. Ecco G, Imbeault M, Trono D. Development 144 2719-2729 (2017)
  8. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Klug A. Q Rev Biophys 43 1-21 (2010)
  9. Integrating biological redesign: where synthetic biology came from and where it needs to go. Way JC, Collins JJ, Keasling JD, Silver PA. Cell 157 151-161 (2014)
  10. Designing transcription factor architectures for drug discovery. Blancafort P, Segal DJ, Barbas CF. Mol Pharmacol 66 1361-1371 (2004)
  11. Is there a code for protein-DNA recognition? Probab(ilistical)ly. . . Benos PV, Lapedes AS, Stormo GD. Bioessays 24 466-475 (2002)
  12. Advances in zinc finger engineering. Choo Y, Isalan M. Curr Opin Struct Biol 10 411-416 (2000)
  13. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Skrajnowska D, Bobrowska-Korczak B. Nutrients 11 E2273 (2019)
  14. The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Wang K, Ding Y, Cai C, Chen Z, Zhu C. Physiol Plant 165 690-700 (2019)
  15. Design of novel sequence-specific DNA-binding proteins. Segal DJ, Barbas CF. Curr Opin Chem Biol 4 34-39 (2000)
  16. In vitro selection of nucleic acids and proteins: What are we learning? Roberts RW, Ja WW. Curr Opin Struct Biol 9 521-529 (1999)
  17. Designed transcription factors as tools for therapeutics and functional genomics. Urnov FD, Rebar EJ. Biochem Pharmacol 64 919-923 (2002)
  18. Interrogating genomes with combinatorial artificial transcription factor libraries: asking zinc finger questions. Beltran A, Liu Y, Parikh S, Temple B, Blancafort P. Assay Drug Dev Technol 4 317-331 (2006)
  19. Artificial zinc finger peptides: creation, DNA recognition, and gene regulation. Nagaoka M, Sugiura Y. J Inorg Biochem 82 57-63 (2000)
  20. Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression. Hossain MA, Barrow JJ, Shen Y, Haq MI, Bungert J. J Cell Biochem 116 2435-2444 (2015)
  21. Flexibility and Disorder in Gene Regulation: LacI/GalR and Hox Proteins. Bondos SE, Swint-Kruse L, Matthews KS. J Biol Chem 290 24669-24677 (2015)

Articles citing this publication (83)

  1. An improved zinc-finger nuclease architecture for highly specific genome editing. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ. Nat Biotechnol 25 778-785 (2007)
  2. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. Segal DJ, Dreier B, Beerli RR, Barbas CF. Proc Natl Acad Sci U S A 96 2758-2763 (1999)
  3. ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D. Nucleic Acids Res 38 W462-8 (2010)
  4. A synthetic biology framework for programming eukaryotic transcription functions. Khalil AS, Lu TK, Bashor CJ, Ramirez CL, Pyenson NC, Joung JK, Collins JJ. Cell 150 647-658 (2012)
  5. Adaptive evolution in zinc finger transcription factors. Emerson RO, Thomas JH. PLoS Genet 5 e1000325 (2009)
  6. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST. Genes Dev 14 2146-2160 (2000)
  7. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J Mol Biol 301 597-624 (2000)
  8. Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Man TK, Stormo GD. Nucleic Acids Res 29 2471-2478 (2001)
  9. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Arnaud L, Saison C, Helias V, Lucien N, Steschenko D, Giarratana MC, Prehu C, Foliguet B, Montout L, de Brevern AG, Francina A, Ripoche P, Fenneteau O, Da Costa L, Peyrard T, Coghlan G, Illum N, Birgens H, Tamary H, Iolascon A, Delaunay J, Tchernia G, Cartron JP. Am J Hum Genet 87 721-727 (2010)
  10. Human zinc fingers as building blocks in the construction of artificial transcription factors. Bae KH, Kwon YD, Shin HC, Hwang MS, Ryu EH, Park KS, Yang HY, Lee DK, Lee Y, Park J, Kwon HS, Kim HW, Yeh BI, Lee HW, Sohn SH, Yoon J, Seol W, Kim JS. Nat Biotechnol 21 275-280 (2003)
  11. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. Wolfe SA, Greisman HA, Ramm EI, Pabo CO. J Mol Biol 285 1917-1934 (1999)
  12. Insights into the molecular recognition of the 5'-GNN-3' family of DNA sequences by zinc finger domains. Dreier B, Segal DJ, Barbas CF. J Mol Biol 303 489-502 (2000)
  13. Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R. Proteins 61 258-271 (2005)
  14. Ab initio prediction of transcription factor targets using structural knowledge. Kaplan T, Friedman N, Margalit H. PLoS Comput Biol 1 e1 (2005)
  15. Probabilistic code for DNA recognition by proteins of the EGR family. Benos PV, Lapedes AS, Stormo GD. J Mol Biol 323 701-727 (2002)
  16. Analyzing protein-DNA recognition mechanisms. Paillard G, Lavery R. Structure 12 113-122 (2004)
  17. Beyond the "recognition code": structures of two Cys2His2 zinc finger/TATA box complexes. Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO. Structure 9 717-723 (2001)
  18. Predicting DNA recognition by Cys2His2 zinc finger proteins. Persikov AV, Osada R, Singh M. Bioinformatics 25 22-29 (2009)
  19. A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Lohmueller JJ, Armel TZ, Silver PA. Nucleic Acids Res 40 5180-5187 (2012)
  20. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA. Segal DJ, Crotty JW, Bhakta MS, Barbas CF, Horton NC. J Mol Biol 363 405-421 (2006)
  21. Asymmetrical roles of zinc fingers in dynamic DNA-scanning process by the inducible transcription factor Egr-1. Zandarashvili L, Vuzman D, Esadze A, Takayama Y, Sahu D, Levy Y, Iwahara J. Proc Natl Acad Sci U S A 109 E1724-32 (2012)
  22. Structure of the Wilms tumor suppressor protein zinc finger domain bound to DNA. Stoll R, Lee BM, Debler EW, Laity JH, Wilson IA, Dyson HJ, Wright PE. J Mol Biol 372 1227-1245 (2007)
  23. Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition. Miller JC, Pabo CO. J Mol Biol 313 309-315 (2001)
  24. Deep vertebrate roots for mammalian zinc finger transcription factor subfamilies. Liu H, Chang LH, Sun Y, Lu X, Stubbs L. Genome Biol Evol 6 510-525 (2014)
  25. Structure-based prediction of bZIP partnering specificity. Grigoryan G, Keating AE. J Mol Biol 355 1125-1142 (2006)
  26. Using a structural and logics systems approach to infer bHLH-DNA binding specificity determinants. De Masi F, Grove CA, Vedenko A, Alibés A, Gisselbrecht SS, Serrano L, Bulyk ML, Walhout AJ. Nucleic Acids Res 39 4553-4563 (2011)
  27. Sequence variation in ligand binding sites in proteins. Magliery TJ, Regan L. BMC Bioinformatics 6 240 (2005)
  28. A global role for zebrafish klf4 in embryonic erythropoiesis. Gardiner MR, Gongora MM, Grimmond SM, Perkins AC. Mech Dev 124 762-774 (2007)
  29. Context-dependent DNA recognition code for C2H2 zinc-finger transcription factors. Liu J, Stormo GD. Bioinformatics 24 1850-1857 (2008)
  30. High resolution crystal structure of bovine mitochondrial EF-Tu in complex with GDP. Andersen GR, Thirup S, Spremulli LL, Nyborg J. J Mol Biol 297 421-436 (2000)
  31. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Reynolds PA, Smolen GA, Palmer RE, Sgroi D, Yajnik V, Gerald WL, Haber DA. Genes Dev 17 2094-2107 (2003)
  32. Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes. Singleton BK, Lau W, Fairweather VS, Burton NM, Wilson MC, Parsons SF, Richardson BM, Trakarnsanga K, Brady RL, Anstee DJ, Frayne J. Blood 118 3137-3145 (2011)
  33. Reprogrammable recognition codes in bicoid homeodomain-DNA interaction. Dave V, Zhao C, Yang F, Tung CS, Ma J. Mol Cell Biol 20 7673-7684 (2000)
  34. Energy-based prediction of amino acid-nucleotide base recognition. Marabotti A, Spyrakis F, Facchiano A, Cozzini P, Alberti S, Kellogg GE, Mozzarelli A. J Comput Chem 29 1955-1969 (2008)
  35. Constraints for zinc finger linker design as inferred from X-ray crystal structure of tandem Zif268-DNA complexes. Peisach E, Pabo CO. J Mol Biol 330 1-7 (2003)
  36. Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Sanchez JP, Ullman C, Moore M, Choo Y, Chua NH. Plant Cell Physiol 43 1465-1472 (2002)
  37. Signatures of protein-DNA recognition in free DNA binding sites. Locasale JW, Napoli AA, Chen S, Berman HM, Lawson CL. J Mol Biol 386 1054-1065 (2009)
  38. Promiscuous DNA-binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability. Gillinder KR, Ilsley MD, Nébor D, Sachidanandam R, Lajoie M, Magor GW, Tallack MR, Bailey T, Landsberg MJ, Mackay JP, Parker MW, Miles LA, Graber JH, Peters LL, Bieker JJ, Perkins AC. Nucleic Acids Res 45 1130-1143 (2017)
  39. The COMET toolkit for composing customizable genetic programs in mammalian cells. Donahue PS, Draut JW, Muldoon JJ, Edelstein HI, Bagheri N, Leonard JN. Nat Commun 11 779 (2020)
  40. A specificity switch in selected cre recombinase variants is mediated by macromolecular plasticity and water. Baldwin EP, Martin SS, Abel J, Gelato KA, Kim H, Schultz PG, Santoro SW. Chem Biol 10 1085-1094 (2003)
  41. DNA recognition with large calixarene dimers. Zadmard R, Schrader T. Angew Chem Int Ed Engl 45 2703-2706 (2006)
  42. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein. Liu J, Stormo GD. BMC Bioinformatics 6 176 (2005)
  43. Utilization of a synthetic peptide as a tool to study the interaction of heavy metals with the zinc finger domain of proteins critical for gene expression in the developing brain. Razmiafshari M, Zawia NH. Toxicol Appl Pharmacol 166 1-12 (2000)
  44. Evolution of iron(II)-finger peptides by using a bipyridyl amino acid. Kang M, Light K, Ai HW, Shen W, Kim CH, Chen PR, Lee HS, Solomon EI, Schultz PG. Chembiochem 15 822-825 (2014)
  45. Experimentally based contact energies decode interactions responsible for protein-DNA affinity and the role of molecular waters at the binding interface. Temiz NA, Camacho CJ. Nucleic Acids Res 37 4076-4088 (2009)
  46. A less-biased analysis of metalloproteins reveals novel zinc coordination geometries. Yao S, Flight RM, Rouchka EC, Moseley HN. Proteins 83 1470-1487 (2015)
  47. Interaction identification of Zif268 and TATA(ZF) proteins with GC-/AT-rich DNA sequence: A theoretical study. Yang B, Zhu Y, Wang Y, Chen G. J Comput Chem 32 416-428 (2011)
  48. A protein adaptor to locate a functional protein dimer on molecular switchboard. Ngo TA, Nakata E, Saimura M, Kodaki T, Morii T. Methods 67 142-150 (2014)
  49. Characterization of Drosophila OVO protein DNA binding specificity using random DNA oligomer selection suggests zinc finger degeneration. Lee S, Garfinkel MD. Nucleic Acids Res 28 826-834 (2000)
  50. Gene regulation in planta by plant-derived engineered zinc finger protein transcription factors. Holmes-Davis R, Li G, Jamieson AC, Rebar EJ, Liu Q, Kong Y, Case CC, Gregory PD. Plant Mol Biol 57 411-423 (2005)
  51. Automatic workflow for the classification of local DNA conformations. Čech P, Kukal J, Černý J, Schneider B, Svozil D. BMC Bioinformatics 14 205 (2013)
  52. Choice of binding sites for CTCFL compared to CTCF is driven by chromatin and by sequence preference. Bergmaier P, Weth O, Dienstbach S, Boettger T, Galjart N, Mernberger M, Bartkuhn M, Renkawitz R. Nucleic Acids Res 46 7097-7107 (2018)
  53. Effects of the biological backbone on stacking interactions at DNA-protein interfaces: the interplay between the backbone···π and π···π components. Churchill CD, Rutledge LR, Wetmore SD. Phys Chem Chem Phys 12 14515-14526 (2010)
  54. Design of novel zinc finger proteins: towards artificial control of specific gene expression. Imanishi M, Hori Y, Nagaoka M, Sugiura Y. Eur J Pharm Sci 13 91-97 (2001)
  55. KRAB zinc finger protein diversification drives mammalian interindividual methylation variability. Bertozzi TM, Elmer JL, Macfarlan TS, Ferguson-Smith AC. Proc Natl Acad Sci U S A 117 31290-31300 (2020)
  56. Synthesis of a three zinc finger protein, Zif268, by native chemical ligation. Beligere GS, Dawson PE. Biopolymers 51 363-369 (1999)
  57. Construction of an artificial tandem protein of the c-Myb DNA-binding domain and analysis of its DNA binding specificity. Oda M, Furukawa K, Sarai A, Nakamura H. Biochem Biophys Res Commun 262 94-97 (1999)
  58. Crystal structures of REF6 and its complex with DNA reveal diverse recognition mechanisms. Tian Z, Li X, Li M, Wu W, Zhang M, Tang C, Li Z, Liu Y, Chen Z, Yang M, Ma L, Caba C, Tong Y, Lam HM, Dai S, Chen Z. Cell Discov 6 17 (2020)
  59. Differential expression of zinc transporters accompanies the differentiation of C2C12 myoblasts. Paskavitz AL, Quintana J, Cangussu D, Tavera-Montañez C, Xiao Y, Ortiz-Miranda S, Navea JG, Padilla-Benavides T. J Trace Elem Med Biol 49 27-34 (2018)
  60. Solution structures of the DNA-binding domains of immune-related zinc-finger protein ZFAT. Tochio N, Umehara T, Nakabayashi K, Yoneyama M, Tsuda K, Shirouzu M, Koshiba S, Watanabe S, Kigawa T, Sasazuki T, Shirasawa S, Yokoyama S. J Struct Funct Genomics 16 55-65 (2015)
  61. The recognition of a noncanonical RNA base pair by a zinc finger protein. Blancafort P, Steinberg SV, Paquin B, Klinck R, Scott JK, Cedergren R. Chem Biol 6 585-597 (1999)
  62. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering. Blackburn MC, Petrova E, Correia BE, Maerkl SJ. Nucleic Acids Res 44 e68 (2016)
  63. Importance of alpha-helix N-capping motif in stabilization of betabetaalpha fold. Koscielska-Kasprzak K, Cierpicki T, Otlewski J. Protein Sci 12 1283-1289 (2003)
  64. Coevolution of protein and RNA structures within a highly conserved ribosomal domain. Dunstan MS, Guhathakurta D, Draper DE, Conn GL. Chem Biol 12 201-206 (2005)
  65. Optimization of minimum set of protein-DNA interactions: a quasi exact solution with minimum over-fitting. Temiz NA, Trapp A, Prokopyev OA, Camacho CJ. Bioinformatics 26 319-325 (2010)
  66. The evolution of gene expression and binding specificity of the largest transcription factor family in primates. Kapopoulou A, Mathew L, Wong A, Trono D, Jensen JD. Evolution 70 167-180 (2016)
  67. Recognition rules for binding of Zn-Cys2His2 transcription factors to operator DNA. Polozov RV, Sivozhelezov VS, Chirgadze YN, Ivanov VV. J Biomol Struct Dyn 33 253-266 (2015)
  68. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Holub JM. Drug Dev Res 78 268-282 (2017)
  69. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins. Lin CY, Lin LY. PLoS One 13 e0191971 (2018)
  70. Zn-Induced Interactions Between SARS-CoV-2 orf7a and BST2/Tetherin. Petrosino M, Stellato F, Chiaraluce R, Consalvi V, La Penna G, Pasquo A, Proux O, Rossi G, Morante S. ChemistryOpen 10 1133-1141 (2021)
  71. Incorporating modeling and simulations in undergraduate biophysical chemistry course to promote understanding of structure-dynamics-function relationships in proteins. Hati S, Bhattacharyya S. Biochem Mol Biol Educ 44 140-159 (2016)
  72. Influence of sequential guanidinium methylation on the energetics of the guanidinium...guanine dimer and guanidinium...guanine...cytosine trimer: implications for the control of protein...DNA interactions by arginine methyltransferases. Shearer J. J Phys Chem B 112 16995-17002 (2008)
  73. Solution structures and characterization of human immunodeficiency virus Rev responsive element IIB RNA targeting zinc finger proteins. Mishra SH, Shelley CM, Barrow DJ, Darby MK, Germann MW. Biopolymers 83 352-364 (2006)
  74. Zn2+ sequestration by Nostoc muscorum: study of thermodynamics, equilibrium isotherms, and biosorption parameters for the metal. Diengdoh OL, Syiem MB, Pakshirajan K, Rai AN. Environ Monit Assess 189 314 (2017)
  75. Novel modulation factor quantifies the role of water molecules in protein interactions. Bueno M, Temiz NA, Camacho CJ. Proteins 78 3226-3234 (2010)
  76. Genetic features and genomic targets of human KRAB-zinc finger proteins. de Tribolet-Hardy J, Thorball CW, Forey R, Planet E, Duc J, Coudray A, Khubieh B, Offner S, Pulver C, Fellay J, Imbeault M, Turelli P, Trono D. Genome Res 33 1409-1423 (2023)
  77. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations. Hamed MY. J Comput Aided Mol Des 32 657-669 (2018)
  78. Single molecule characterization of the binding kinetics of a transcription factor and its modulation by DNA sequence and methylation. Khamis H, Rudnizky S, Melamed P, Kaplan A. Nucleic Acids Res 49 10975-10987 (2021)
  79. The electrostatic role of the Zn-Cys2His2 complex in binding of operator DNA with transcription factors: mouse EGR-1 from the Cys2His2 family. Chirgadze YN, Boshkova EA, Polozov RV, Sivozhelezov VS, Dzyabchenko AV, Kuzminsky MB, Stepanenko VA, Ivanov VV. J Biomol Struct Dyn 36 3902-3915 (2018)
  80. A deterministic code for transcription factor-DNA recognition through computation of binding interfaces. Trerotola M, Antolini L, Beni L, Guerra E, Spadaccini M, Verzulli D, Moschella A, Alberti S. NAR Genom Bioinform 4 lqac008 (2022)
  81. Hydrogen bonds in Zif268 proteins - a theoretical perspective. Palanivel U, Lakshmipathi S. J Biomol Struct Dyn 34 1607-1624 (2016)
  82. Identifying Metal Binding Sites in Proteins Using Homologous Structures, the MADE Approach. Ravnik V, Jukič M, Bren U. J Chem Inf Model 63 5204-5219 (2023)
  83. In vitro and in silico analysis of the Aspergillus nidulans DNA-CreA repressor interactions. Esperón P, Scazzocchio C, Paulino M. J Biomol Struct Dyn 32 2033-2041 (2014)


Related citations provided by authors (3)