101d Citations

Refinement of netropsin bound to DNA: bias and feedback in electron density map interpretation.

Biochemistry 34 4983-93 (1995)
Cited: 53 times
EuropePMC logo PMID: 7711020

Abstract

The X-ray crystal structure of the complex of the B-DNA dodecamer CGCGAATTCGCG with the antitumor drug netropsin has been reexamined to locate the drug accurately for computer-based drug design. The optimum solution is with the drug centered in the AATT region of the minor groove, making three good bifurcated hydrogen bonds with adenine N3 and thymine O2 atoms along the floor of the groove. Pyrrole rings of netropsin are packed against the C2 positions of adenines, leaving no room for the amine group of guanine and, hence, providing a structural rationale for the A.T specificity of netropsin. An alternative positioning in which the drug is shifted along the minor groove by ca. one-half base pair step is rejected on the basis of free R factor calculations and the appearance of the original drug-free difference maps. Final omit maps, although of more pleasing appearance, are not a dependable means of discriminating between right and wrong structures. The shifted alternative drug position ignores potential hydrogen bonding along the floor of the groove, provides no explanation for netropsin's observed A.T specificity, and is contradicted by NMR results [Patel, D. J. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6424].

Reviews - 101d mentioned but not cited (1)

  1. Photochemistry of flavonoids. Sisa M, Bonnet SL, Ferreira D, Van der Westhuizen JH. Molecules 15 5196-5245 (2010)

Articles - 101d mentioned but not cited (16)

  1. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. Sirim D, Widmann M, Wagner F, Pleiss J. BMC Struct Biol 10 34 (2010)
  2. A role for water molecules in DNA-ligand minor groove recognition. Nguyen B, Neidle S, Wilson WD. Acc Chem Res 42 11-21 (2009)
  3. Torsional sensing of small-molecule binding using magnetic tweezers. Lipfert J, Klijnhout S, Dekker NH. Nucleic Acids Res 38 7122-7132 (2010)
  4. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site. Dolenc J, Oostenbrink C, Koller J, van Gunsteren WF. Nucleic Acids Res 33 725-733 (2005)
  5. Small-molecule binding to the DNA minor groove is mediated by a conserved water cluster. Wei D, Wilson WD, Neidle S. J Am Chem Soc 135 1369-1377 (2013)
  6. Computational mapping reveals dramatic effect of Hoogsteen breathing on duplex DNA reactivity with formaldehyde. Bohnuud T, Beglov D, Ngan CH, Zerbe B, Hall DR, Brenke R, Vajda S, Frank-Kamenetskii MD, Kozakov D. Nucleic Acids Res 40 7644-7652 (2012)
  7. A host-guest approach for determining drug-DNA interactions: an example using netropsin. Goodwin KD, Long EC, Georgiadis MM. Nucleic Acids Res 33 4106-4116 (2005)
  8. Configurational entropy change of netropsin and distamycin upon DNA minor-groove binding. Dolenc J, Baron R, Oostenbrink C, Koller J, van Gunsteren WF. Biophys J 91 1460-1470 (2006)
  9. Indirect readout in drug-DNA recognition: role of sequence-dependent DNA conformation. Araúzo-Bravo MJ, Sarai A. Nucleic Acids Res 36 376-386 (2008)
  10. Synthetic Carbohydrate Chemistry and Translational Medicine. Shivatare SS, Wong CH. J Org Chem 85 15780-15800 (2020)
  11. 3DNALandscapes: a database for exploring the conformational features of DNA. Zheng G, Colasanti AV, Lu XJ, Olson WK. Nucleic Acids Res 38 D267-74 (2010)
  12. Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16. Wang L, Zhu M, Fang Y, Rong H, Gao L, Liao Q, Zhang L, Dong C. Sci Rep 11 5701 (2021)
  13. Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation. Pentin I, Vakhtomin Y, Seleznev V, Smirnov K. Sci Rep 10 16819 (2020)
  14. Molecular Skin Surface-Based Transformation Visualization between Biological Macromolecules. Yan K, Wang B, Cheng H, Ji Z, Huang J, Gao Z. J Healthc Eng 2017 4818604 (2017)
  15. The Signatures of Natural Selection and Molecular Evolution in Fusarium graminearum Virus 1. Heo JI, Yu J, Choi H, Kim KH. Front Microbiol 11 600775 (2020)
  16. Controlled self-assembly into diverse stimuli-responsive microstructures: from microspheres to branched cylindrical micelles and vesicles. Zhou X, Li L, Qin H, Ning B, Li J, Kan C. RSC Adv 8 21613-21620 (2018)


Reviews citing this publication (4)

  1. Synthetic DNA minor groove-binding drugs. Reddy BS, Sondhi SM, Lown JW. Pharmacol Ther 84 1-111 (1999)
  2. Oxygen-17 NMR spectroscopy: basic principles and applications (part I). Gerothanassis IP. Prog Nucl Magn Reson Spectrosc 56 95-197 (2010)
  3. DNA recognition and bending. Allemann RK, Egli M. Chem Biol 4 643-650 (1997)
  4. Crystal structures of nucleic acids and their drug complexes. Neidle S, Nunn CM. Nat Prod Rep 15 1-15 (1998)

Articles citing this publication (32)

  1. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Huth JR, Bewley CA, Nissen MS, Evans JN, Reeves R, Gronenborn AM, Clore GM. Nat Struct Biol 4 657-665 (1997)
  2. Sequence-specific binding of counterions to B-DNA. Denisov VP, Halle B. Proc Natl Acad Sci U S A 97 629-633 (2000)
  3. Kinetics of DNA hydration. Denisov VP, Carlström G, Venu K, Halle B. J Mol Biol 268 118-136 (1997)
  4. Defining GC-specificity in the minor groove: side-by-side binding of the di-imidazole lexitropsin to C-A-T-G-G-C-C-A-T-G. Kopka ML, Goodsell DS, Han GW, Chiu TK, Lown JW, Dickerson RE. Structure 5 1033-1046 (1997)
  5. Two 1 : 1 binding modes for distamycin in the minor groove of d(GGCCAATTGG). Uytterhoeven K, Sponer J, Van Meervelt L. Eur J Biochem 269 2868-2877 (2002)
  6. Energetic diversity of DNA minor-groove recognition by small molecules displayed through some model ligand-DNA systems. Lah J, Vesnaver G. J Mol Biol 342 73-89 (2004)
  7. Hydrogen bond geometry in DNA-minor groove binding drug complexes. Tabernero L, Bella J, Alemán C. Nucleic Acids Res 24 3458-3466 (1996)
  8. PCR-based development of DNA substrates containing modified bases: an efficient system for investigating the role of the exocyclic groups in chemical and structural recognition by minor groove binding drugs and proteins. Bailly C, Payet D, Travers AA, Waring MJ. Proc Natl Acad Sci U S A 93 13623-13628 (1996)
  9. Binding of netropsin and 4,6-diamidino-2-phenylindole to an A2T2 DNA hairpin: a comparison of biophysical techniques. Freyer MW, Buscaglia R, Nguyen B, Wilson WD, Lewis EA. Anal Biochem 355 259-266 (2006)
  10. Netropsin improves survival from endotoxaemia by disrupting HMGA1 binding to the NOS2 promoter. Grant MA, Baron RM, Macias AA, Layne MD, Perrella MA, Rigby AC. Biochem J 418 103-112 (2009)
  11. Binding of netropsin to several DNA constructs: evidence for at least two different 1:1 complexes formed from an -AATT-containing ds-DNA construct and a single minor groove binding ligand. Freyer MW, Buscaglia R, Cashman D, Hyslop S, Wilson WD, Chaires JB, Lewis EA. Biophys Chem 126 186-196 (2007)
  12. Monovalent cation binding in the minor groove of DNA A-tracts. Dong Q, Stellwagen E, Stellwagen NC. Biochemistry 48 1047-1055 (2009)
  13. Stable three-center hydrogen bonding in a partially rigidified structure. Parra RD, Zeng H, Zhu J, Zheng C, Zeng XC, Gong B. Chemistry 7 4352-4357 (2001)
  14. Stacking interaction of guanine with netropsin in the minor groove of d(CGTATATACG)2. Abrescia NG, Malinina L, Subirana JA. J Mol Biol 294 657-666 (1999)
  15. Conformational transitions of the phosphodiester backbone in native DNA: two-dimensional magic-angle-spinning 31P-NMR of DNA fibers. Song Z, Antzutkin ON, Lee YK, Shekar SC, Rupprecht A, Levitt MH. Biophys J 73 1539-1552 (1997)
  16. Netropsin interactions in the minor groove of d(GGCCAATTGG) studied by a combination of resolution enhancement and ab initio calculations. Van Hecke K, Nam PC, Nguyen MT, Van Meervelt L. FEBS J 272 3531-3541 (2005)
  17. DNA minor groove recognition of a non-self-complementary AT-rich sequence by a tris-benzimidazole ligand. Aymami J, Nunn CM, Neidle S. Nucleic Acids Res 27 2691-2698 (1999)
  18. Iron(III) Schiff base complexes of arginine and lysine as netropsin mimics showing AT-selective DNA binding and photonuclease activity. Ameerunisha Begum MS, Saha S, Nethaji M, Chakravarty AR. J Inorg Biochem 104 477-484 (2010)
  19. Significance of ligand tails for interaction with the minor groove of B-DNA. Wellenzohn B, Flader W, Winger RH, Hallbrucker A, Mayer E, Liedl KR. Biophys J 81 1588-1599 (2001)
  20. Binding of Net-Fla, a netropsin-flavin hybrid molecule, to DNA: molecular mechanics and dynamics studies in vacuo and in water solution. Ketterlé C, Gabarro-Arpa J, Ouali M, Bouziane M, Auclair C, Helissey P, Giorgi-Renault S, Le Bret M. J Biomol Struct Dyn 13 963-977 (1996)
  21. The width of the minor groove affects the binding of the bisquaternary heterocycle SN-6999 to duplex DNA. Rydzewski JM, Leupin W, Chazin W. Nucleic Acids Res 24 1287-1293 (1996)
  22. Cooperative effects in two-dimensional ring-like networks of three-center hydrogen bonding interactions. Parra RD, Bulusu S, Zeng XC. J Chem Phys 122 184325 (2005)
  23. Sugar-oligoamides: bound-state conformation and DNA minor-groove-binding description by TR-NOESY and differential-frequency saturation-transfer-difference experiments. Souard F, Muñoz E, Peñalver P, Badía C, del Villar-Guerra R, Asensio JL, Jiménez-Barbero J, Vicent C. Chemistry 14 2435-2442 (2008)
  24. Conjugates of minor groove DNA binders with oligodeoxynucleotides: synthesis and properties. Levina AS, Metelev VG, Cohen AS, Zamecnik PC. Antisense Nucleic Acid Drug Dev 6 75-85 (1996)
  25. Design and analysis of RNA structure-specific agents as potential antivirals. Wilson WD, Ratmeyer L, Zhao M, Ding D, McConnaughie AW, Kumar A, Boykin DW. J Mol Recognit 9 187-196 (1996)
  26. Artemisinin-polypyrrole conjugates: synthesis, DNA binding studies and preliminary antiproliferative evaluation. La Pensée L, Sabbani S, Sharma R, Bhamra I, Shore E, Chadwick AE, Berry NG, Firman J, Araujo NC, Cabral L, Cristiano ML, Bateman C, Janneh O, Gavrila A, Wu YH, Hussain A, Ward SA, Stocks PA, Cosstick R, O'Neill PM. ChemMedChem 8 709-718 (2013)
  27. Comprehensive study on the binding of iron schiff base complex with DNA and determining the binding mode. Nejat Dehkordi M, Lincoln P. J Fluoresc 23 813-821 (2013)
  28. Use of the parmbsc0 force field and trajectory analysis to study the binding of netropsin to the DNA fragment (5'CCAATTGG)(2) in the presence of excess NaCl salt in aqueous solution. Andac CA, Miandji AM, Hornemann U, Noyanalpan N. Int J Biol Macromol 48 531-539 (2011)
  29. Influence of netropsin's charges on the minor groove width of d(CGCGAATTCGCG)2. Wellenzohn B, Flader W, Winger RH, Hallbrucker A, Mayer E, Liedl KR. Biopolymers 61 276-286 (2001)
  30. Quantitative evaluation of the interaction between netropsin and double stranded oligodeoxynucleotides by microfabricated capillary array electrophoresis. Shen Z, Liu X, Zhou X, Liang A, Wu D, Yu L, Dai Z, Qin J, Lin B. J Sep Sci 30 1544-1548 (2007)
  31. Small ligands that neither bind to nor alter the structure of d(GA x TC)n sequences in DNA. Vaquero A, Portugal J. FEBS Lett 420 156-160 (1997)
  32. Examining the Effects of Netropsin on the Curvature of DNA A-Tracts Using Electrophoresis. Miller J, Peters JP. Molecules 26 5871 (2021)


Related citations provided by authors (1)

  1. Binding of an Antitumor Drug to DNA. Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. Kopka ML, Yoon C, Goodsell DS, Pjura P, Dickerson RE J. Mol. Biol. 183 553-563 (1985)