Restriction endonuclease, type II, EcoRII, N-terminal (IPR023372)

Short name: Rest_endonuc_II_EcoRII_N

Overlapping homologous superfamilies

Domain relationships



There are four classes of restriction endonucleases: types I, II,III and IV. All types of enzymes recognise specific short DNA sequences and carry out the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. They differ in their recognition sequence, subunit composition, cleavage position, and cofactor requirements [PMID: 15121719, PMID: 12665693], as summarised below:

  • Type I enzymes (EC: cleave at sites remote from recognition site; require both ATP and S-adenosyl-L-methionine to function; multifunctional protein with both restriction and methylase (EC: activities.
  • Type II enzymes (EC: cleave within or at short specific distances from recognition site; most require magnesium; single function (restriction) enzymes independent of methylase.
  • Type III enzymes (EC: cleave at sites a short distance from recognition site; require ATP (but doesn't hydrolyse it); S-adenosyl-L-methionine stimulates reaction but is not required; exists as part of a complex with a modification methylase methylase (EC:
  • Type IV enzymes target methylated DNA.

Type II restriction endonucleases (EC: are components of prokaryotic DNA restriction-modification mechanisms that protect the organism against invading foreign DNA. These site-specific deoxyribonucleases catalyse the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. Of the 3000 restriction endonucleases that have been characterised, most are homodimeric or tetrameric enzymes that cleave target DNA at sequence-specific sites close to the recognition site. For homodimeric enzymes, the recognition site is usually a palindromic sequence 4-8 bp in length. Most enzymes require magnesium ions as a cofactor for catalysis. Although they can vary in their mode of recognition, many restriction endonucleases share a similar structural core comprising four beta-strands and one alpha-helix, as well as a similar mechanism of cleavage, suggesting a common ancestral origin [PMID: 15770420]. However, there is still considerable diversity amongst restriction endonucleases [PMID: 14576294, PMID: 11827971]. The target site recognition process triggers large conformational changes of the enzyme and the target DNA, leading to the activation of the catalytic centres. Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding as well, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone [PMID: 11557805].

This entry represents the N-terminal effector-binding domain of the type II restriction endonuclease EcoRII, which has a DNA recognition fold, allowing for binding to 5'-CCWGG sequences. It assumes a structure composed of an eight-stranded beta-sheet with the strands in the order of b2, b5, b4, b3, b7, b6, b1 and b8. They are mostly antiparallel to each other except that b3 is parallel to b7. Alternatively, it may also be viewed as consisting of two mini beta-sheets of four antiparallel beta-strands, sheet I from beta-strands b2, b5, b4, b3 and sheet II from strands b7, b6, b1, b8, folded into an open mixed beta-barrel with a novel topology. Sheet I has a simple Greek key motif while sheet II does not [PMID: 14659759].

The domain represented by this entry is only found in bacterial proteins.

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.