Photosystem II cytochrome b559, N-terminal (IPR013081)

Short name: PSII_cyt_b559_N

Overlapping homologous superfamilies


Domain relationships



Oxygenic photosynthesis uses two multi-subunit photosystems (I and II) located in the cell membranes of cyanobacteria and in the thylakoid membranes of chloroplasts in plants and algae. Photosystem II (PSII) has a P680 reaction centre containing chlorophyll 'a' that uses light energy to carry out the oxidation (splitting) of water molecules, and to produce ATP via a proton pump. Photosystem I (PSI) has a P700 reaction centre containing chlorophyll that takes the electron and associated hydrogen donated from PSII to reduce NADP+ to NADPH. Both ATP and NADPH are subsequently used in the light-independent reactions to convert carbon dioxide to glucose using the hydrogen atom extracted from water by PSII, releasing oxygen as a by-product.

PSII is a multisubunit protein-pigment complex containing polypeptides both intrinsic and extrinsic to the photosynthetic membrane [PMID: 12518057, PMID: 15100025]. Within the core of the complex, the chlorophyll and beta-carotene pigments are mainly bound to the antenna proteins CP43 (PsbC) and CP47 (PsbB), which pass the excitation energy on to the reaction centre proteins D1 (Qb, PsbA) and D2 (Qa, PsbD) that bind all the redox-active cofactors involved in the energy conversion process. The PSII oxygen-evolving complex (OEC) oxidises water to provide protons for use by PSI, and consists of OEE1 (PsbO), OEE2 (PsbP) and OEE3 (PsbQ). The remaining subunits in PSII are of low molecular weight (less than 10 kDa), and are involved in PSII assembly, stabilisation, dimerisation, and photo-protection [PMID: 14871485].

Cytochrome b559, which forms part of the reaction centre core of PSII is a heterodimer composed of one alpha subunit (PsbE), one beta (PsbF) subunit, and a haem cofactor. Two histidine residues from each subunit coordinate the haem. Although cytochrome b559 is a redox-active protein, it is unlikely to be involved in the primary electron transport in PSII due to its very slow photo-oxidation and photo-reduction kinetics. Instead, cytochrome b559 could participate in a secondary electron transport pathway that helps protect PSII from photo-damage. Cytochrome b559 is essential for PSII assembly [PMID: 12560096].

This domain occurs in both the alpha and beta subunits of cytochrome B559. In the alpha subunit it occurs together with a lumenal domain (IPR013082), while in the beta subunit it occurs on its own.

GO terms

Biological Process

GO:0015979 photosynthesis

Molecular Function

No terms assigned in this category.

Cellular Component

No terms assigned in this category.

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.