Domain

Zinc finger, DNA glycosylase/AP lyase/isoleucyl tRNA synthetase (IPR010663)

Short name: Znf_DNA_glyclase/IsotRNA_synth

Domain relationships

None.

Description

Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [PMID: 10529348, PMID: 15963892, PMID: 15718139, PMID: 17210253, PMID: 12665246]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [PMID: 11179890]. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.

This entry represents a zinc finger domain found at the C-terminal in both DNA glycosylase/AP lyase enzymes and in isoleucyl tRNA synthetase. In these two types of enzymes, the C-terminal domain forms a zinc finger. Some related proteins may not bind zinc.

DNA glycosylase/AP lyase enzymes are involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. These enzymes have both DNA glycosylase activity (EC:3.2.2) and AP lyase activity (EC:4.2.99.18) [PMID: 11912217]. Examples include formamidopyrimidine-DNA glycosylases (Fpg; MutM) and endonuclease VIII (Nei). Formamidopyrimidine-DNA glycosylases (Fpg, MutM) is a trifunctional DNA base excision repair enzyme that removes a wide range of oxidation-damaged bases (N-glycosylase activity; EC:3.2.2.23) and cleaves both the 3'- and 5'-phosphodiester bonds of the resulting apurinic/apyrimidinic site (AP lyase activity; EC:4.2.99.18). Fpg has a preference for oxidised purines, excising oxidized purine bases such as 7,8-dihydro-8-oxoguanine (8-oxoG). ITs AP (apurinic/apyrimidinic) lyase activity introduces nicks in the DNA strand, cleaving the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. Fpg is a monomer composed of 2 domains connected by a flexible hinge [PMID: 10921868]. The two DNA-binding motifs (a zinc finger and the helix-two-turns-helix motifs) suggest that the oxidized base is flipped out from double-stranded DNA in the binding mode and excised by a catalytic mechanism similar to that of bifunctional base excision repair enzymes [PMID: 10921868]. Fpg binds one ion of zinc at the C terminus, which contains four conserved and essential cysteines [PMID: 8473347]. Endonuclease VIII (Nei) has the same enzyme activities as Fpg above, but with a preference for oxidized pyrimidines, such as thymine glycol, 5,6-dihydrouracil and 5,6-dihydrothymine [PMID: 11847126, PMID: 15232006].

An Fpg-type zinc finger is also found at the C terminus of isoleucyl tRNA synthetase (EC:6.1.1.5) [PMID: 10446055, PMID: 7488160]. This enzyme catalyses the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pre-transfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'post-transfer' editing and involves deacylation of mischarged Val-tRNA(Ile) [PMID: 16697013].

More information about these proteins can be found at Protein of the Month: Zinc Fingers [].

GO terms

Biological Process

No terms assigned in this category.

Molecular Function

GO:0003824 catalytic activity

Cellular Component

No terms assigned in this category.

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.
Pfam