Zinc finger, ClpX C4-type (IPR010603)

Short name: Znf_CppX_C4

Overlapping homologous superfamilies

Domain relationships



Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [PMID: 10529348, PMID: 15963892, PMID: 15718139, PMID: 17210253, PMID: 12665246]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [PMID: 11179890]. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.

The ClpX heat shock protein of Escherichia coli is a member of the universally conserved Hsp100 family of proteins, and possesses a putative zinc finger motif of the C4 type [PMID: 11278349]. This presumed zinc binding domain (ZBD) is found at the N terminus of the ClpX protein. ClpX is an ATPase which functions both as a substrate specificity component of the ClpXP protease and as a molecular chaperone. ZBD is a member of the treble clef zinc finger family, a motif known to facilitate protein-ligand, protein-DNA, and protein-protein interactions and forms a constitutive dimer that is essential for the degradation of some, but not all, ClpX substrates [PMID: 14525985].

GO terms

Biological Process

No terms assigned in this category.

Molecular Function

GO:0046983 protein dimerization activity
GO:0008270 zinc ion binding

Cellular Component

No terms assigned in this category.

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.