5-hydroxytryptamine 3 receptor, B subunit (IPR008134)

Short name: 5HT3_rcpt_B

Overlapping homologous superfamilies

Family relationships


Neurotransmitter ligand-gated ion channels are transmembrane receptor-ion channel complexes that open transiently upon binding of specific ligands, allowing rapid transmission of signals at chemical synapses [PMID: 1721053, PMID: 1846404]. Five of these ion channel receptor families have been shown to form a sequence-related superfamily:

  • Nicotinic acetylcholine receptor (AchR), an excitatory cation channel in vertebrates and invertebrates; in vertebrate motor endplates it is composed of alpha, beta, gamma and delta/epsilon subunits; in neurons it is composed of alpha and non-alpha (or beta) subunits [PMID: 18446614].
  • Glycine receptor, an inhibitory chloride ion channel composed of alpha and beta subunits [PMID: 15383648].
  • Gamma-aminobutyric acid (GABA) receptor, an inhibitory chloride ion channel; at least four types of subunits (alpha, beta, gamma and delta) are known [PMID: 18760291].
  • Serotonin 5HT3 receptor, of which there are seven major types (5HT3-5HT7) [PMID: 10026168].
  • Glutamate receptor, an excitatory cation channel of which at least three types have been described (kainate, N-methyl-D-aspartate (NMDA) and quisqualate) [PMID: 15165736].

These receptors possess a pentameric structure (made up of varying subunits), surrounding a central pore. All known sequences of subunits from neurotransmitter-gated ion-channels are structurally related. They are composed of a large extracellular glycosylated N-terminal ligand-binding domain, followed by three hydrophobic transmembrane regions which form the ionic channel, followed by an intracellular region of variable length. A fourth hydrophobic region is found at the C-terminal of the sequence [PMID: 1721053, PMID: 1846404].

Serotonin (5-hydroxytryptamine, 5-HT) is widely distributed in both the central and peripheral nervous system, where it acts as a neurotransmitter and neuromodulator [PMID: 11871776]. It has been implicated in several aspects of brain function, including regulation of affective states, ingestive behavior and addiction. 5-HT can activate a number of different receptor subtypes that produce diverse neuronal responses, principally through activation of G-protein-mediated signalling pathways. Signalling through the 5-HT3 receptor (5-HT3R) differs, since this subtype belongs to the ligand-gated ion channel (LGIC) superfamily, which also includes the inhibitory gamma-aminobutyric acid type A and glycine receptors, and excitatory nicotinic acetylcholine receptors (nAChR) [PMID: 11358478]. 5-HT3 receptor function has been implicated in a variety of neural processes, including pain perception, emesis, anxiety and drug abuse.

Like the other members of the LGIC superfamily, the 5HT3R exhibits a high degree of sequence similarity, and therefore putative structural similarity, with nAChRs [PMID: 10026168]. Thus, functional 5HT3Rs comprise a pentamer: the ion channel is formed at the centre of a rosette formed between five homologous subunits. Two classes of 5-HT3R subunit are currently known, termed 5-HT3A and 5-HT3B. Whilst homomeric pentamers of 5-HT3A form functional receptors, heteromeric assemblies display channel conductances, cation permeabilities and current-voltage relationships typical of characterised neuronal 5-HT3 channels [PMID: 9950429].

The proposed topology of 5-HT3R subunits comprises four putative transmembrane (TM) domains (designated M1-4); a large extracellular N-terminal region (~200 amino acids); and a variable cytoplasmic loop between M3 and M4. The M2 domains from each subunit are thought to form the channel pore. The agonist binding site is formed by the N terminus, which, on binding, induces a conformational change in the channel pore, a process often referred to as "gating" [PMID: 10825381]. Opening of the pore allows cation flux through the neuronal membrane and depolarises the membrane potential. Thus, 5-HT3Rs may be thought of as excitatory receptors [PMID: 10405996].

Whilst it was initially thought that 5-HT3Rs comprised a homopentamer of alpha subunits, the channel conductance and permeability to anions was different in homomeric receptors from that observed in native channels. More recently, another 5-HT3 receptor subunit, 5-HT3B, was identified and cloned from a human brain cDNA library [PMID: 9950429]. This subunit was unable to form functional channels when expressed alone in oocytes, but produced functional receptors when injected with 5-HT3A into the same cell. It is thought that 5HT3B contributes towards tissue-specific functional changes in 5-HT3-mediated signalling [PMID: 10521471].

GO terms

Biological Process

GO:0006811 ion transport

Molecular Function

GO:0015276 ligand-gated ion channel activity

Cellular Component

GO:0016021 integral component of membrane

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.