Family

Potassium channel, voltage dependent, Kv2.2 (IPR005826)

Short name: K_chnl_volt-dep_Kv2.2

Family relationships

Description

Potassium channels are the most diverse group of the ion channel family [PMID: 1772658, PMID: 1879548]. They are important in shaping the action potential, and in neuronal excitability and plasticity [PMID: 2451788]. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups [PMID: 2555158]: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.

These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers [PMID: 2448635]. In eukaryotic cells, K+ channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes [PMID: 1373731]. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [PMID: 11178249].

All K+ channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+ selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+ across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK, IK and SK) [PMID: 11178249]. The 2TM domain family comprises inward-rectifying K+ channels. In addition, there are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.

The Kv family can be divided into several subfamilies on the basis of sequence similarity and function. Four of these subfamilies, Kv1 (Shaker), Kv2 (Shab), Kv3 (Shaw) and Kv4 (Shal), consist of pore-forming alpha subunits that associate with different types of beta subunit. Each alpha subunit comprises six hydrophobic TM domains with a P-domain between the fifth and sixth, which partially resides in the membrane. The fourth TM domain has positively charged residues at every third residue and acts as a voltage sensor, which triggers the conformational change that opens the channel pore in response to a displacement in membrane potential [PMID: 10712896]. More recently, 4 new electrically-silent alpha subunits have been cloned: Kv5 (KCNF), Kv6 (KCNG), Kv8 and Kv9 (KCNS). These subunits do not themselves possess any functional activity, but appear to form heteromeric channels with Kv2 subunits, and thus modulate Shab channel activity [PMID: 9305895]. When highly expressed, they inhibit channel activity, but at lower levels show more specific modulatory actions.

The Kv2 voltage-dependent potassium channels (also known as the Shab family) are responsible for much of the delayed rectifier current in Drosophila melanogaster (Fruit fly) nervous system and muscle. However, in vertebrates, Kv2 channels have been shwon to be involved in the delayed rectifier currents of the heart and skeletal muscles. They are also thought to be important in determining intrinsic neuronal excitability in both mammals and non-mammals [PMID: 15950285]. Kv2 channels can be further divided into 2 subtypes, designated Kv2.1 and Kv2.2.

The first Kv2.2 channel was cloned from rat and was originally referred to as the circumvillate papilla delayed rectifying K+ channel or cDRK. Several mammalian channels have subsequently been found and, together with the rat Kv2.2 channel, form a small subfamily. They are predominantly expressed in the interneurones; however, their roles are largely undetermined.

GO terms

Biological Process

GO:0006813 potassium ion transport

Molecular Function

GO:0005249 voltage-gated potassium channel activity

Cellular Component

GO:0008076 voltage-gated potassium channel complex

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.
PRINTS