Domain

Translation elongation factor EFG/EF2, domain IV (IPR005517)

Short name: Transl_elong_EFG/EF2_IV

Domain relationships

Description

Translation elongation factors are responsible for two main processes during protein synthesis on the ribosome [PMID: 12762045, PMID: 15922593, PMID: 12932732]. EF1A (or EF-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the A-site (acceptor site) of the ribosome. EF2 (or EF-G) is responsible for the translocation of the peptidyl-tRNA from the A-site to the P-site (peptidyl-tRNA site) of the ribosome, thereby freeing the A-site for the next aminoacyl-tRNA to bind. Elongation factors are responsible for achieving accuracy of translation and both EF1A and EF2 are remarkably conserved throughout evolution.

Elongation factor EF2 (EF-G) is a G-protein. It brings about the translocation of peptidyl-tRNA and mRNA through a ratchet-like mechanism: the binding of GTP-EF2 to the ribosome causes a counter-clockwise rotation in the small ribosomal subunit; the hydrolysis of GTP to GDP by EF2 and the subsequent release of EF2 causes a clockwise rotation of the small subunit back to the starting position [PMID: 12762009, PMID: 12762047]. This twisting action destabilises tRNA-ribosome interactions, freeing the tRNA to translocate along the ribosome upon GTP-hydrolysis by EF2. EF2 binding also affects the entry and exit channel openings for the mRNA, widening it when bound to enable the mRNA to translocate along the ribosome.

EF2 has five domains. This entry represents domain IV found in EF2 (or EF-G) of both prokaryotes and eukaryotes. The EF2-GTP-ribosome complex undergoes extensive structural rearrangement for tRNA-mRNA movement to occur. Domain IV, which extends from the 'body' of the EF2 molecule much like a lever arm, appears to be essential for the structural transition to take place.

More information about these proteins can be found at Protein of the Month: Elongation Factors [].

GO terms

Biological Process

No terms assigned in this category.

Molecular Function

GO:0005525 GTP binding

Cellular Component

No terms assigned in this category.

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.
Pfam
SMART