Potassium channel, voltage dependent, KCNQ3 (IPR003948)

Short name: K_chnl_volt-dep_KCNQ3

Overlapping homologous superfamilies


Family relationships


Potassium channels are the most diverse group of the ion channel family [PMID: 1772658, PMID: 1879548]. They are important in shaping the action potential, and in neuronal excitability and plasticity [PMID: 2451788]. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups [PMID: 2555158]: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.

These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+ channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers [PMID: 2448635]. In eukaryotic cells, K+ channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes [PMID: 1373731]. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [PMID: 11178249].

All K+ channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+ selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+ across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+ channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+ channels; and three types of calcium (Ca)-activated K+ channels (BK, IK and SK) [PMID: 11178249]. The 2TM domain family comprises inward-rectifying K+ channels. In addition, there are K+ channel alpha-subunits that possess two P-domains. These are usually highly regulated K+ selective leak channels.

KCNQ channels (also known as KQT-like channels) differ from other voltage-gated 6 TM helix channels, chiefly in that they possess no tetramerisation domain. Consequently, they rely on interaction with accessory subunits, or form heterotetramers with other members of the family [PMID: 10838601]. Currently, 5 members of the KCNQ family are known. These have been found to be widely distributed within the body, having been shown to be expressed in the heart, brain, pancreas, lung, placenta and ear. They were initially cloned as a result of a search for proteins involved in cardiac arhythmia. Subsequently, mutations in other KCNQ family members have been shown to be responsible for some forms of hereditary deafness [PMID: 8528244] and benign familial neonatal epilepsy [PMID: 9430594].

The KCNQ3 channel subunit is thought to form active channels by hetero- tetramerisation with KCNQ2, although some K+ channel activity does result from the expression of KCNQ3 alone [PMID: 9872318]. Channel function is modulated by phosphorylation; experiments have demonstrated that an increase in intracellular cAMP concentration can enhance channel activity. Frameshift mutations in both KCNQ2 and KCNQ3 are associated with benign familial neonatal epilepsy [PMID: 9872318], a disorder in which infants suffer convulsions within the first 3 days of life. These symptoms usually disappear after about 3 months, but affected individuals have a higher than average chance of subsequently developing epilepsy (10-15%) in later life [PMID: 9430594].

GO terms

Biological Process

GO:0006813 potassium ion transport

Molecular Function

GO:0005249 voltage-gated potassium channel activity

Cellular Component

GO:0016020 membrane

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.