Innexin (IPR000990)

Short name: Innexin

Overlapping homologous superfamilies


Family relationships


This entry includes pannexins from vertebrates and innexins from invertebrate [PMID: 9769729]. Gap junctions are composed of membrane proteins, which form a channel permeable for ions and small molecules connecting cytoplasm of adjacent cells. Although gap junctions provide similar functions in all multicellular organisms, until recently it was believed that vertebrates and invertebrates use unrelated proteins for this purpose. While the connexins family of gap junction proteins is well- characterised in vertebrates, no homologues have been found in invertebrates. In turn, gap junction molecules with no sequence homology to connexins have been identified in insects and nematodes. It has been suggested that these proteins are specific invertebrate gap junctions, and they were thus named innexins (invertebrate analog of connexins) [PMID: 9428764]. As innexin homologues were recently identified in other taxonomic groups including vertebrates, indicating their ubiquitous distribution in the animal kingdom, they were called pannexins (from the Latin pan-all, throughout, and nexus-connection, bond) [PMID: 10898987, PMID: 12492443, PMID: 5028292].

Genomes of vertebrates carry probably a conserved set of 3 pannexin paralogs (PANX1, PANX2 and PANX3). Invertebrate genomes may contain more than a dozen pannexin (innexin) genes. Vinnexins, viral homologues of pannexins/innexins, were identified in Polydnaviruses that occur in obligate symbiotic associations with parasitoid wasps. It was suggested that virally encoded vinnexin proteins may function to alter gap junction proteins in infected host cells, possibly modifying cell-cell communication during encapsulation responses in parasitized insects [PMID: 12205780, PMID: 14651471]. Structurally pannexins are simillar to connexins. Both types of protein consist of a cytoplasmic N-terminal domain, followed by four transmembrane segments that delimit two extracellular and one cytoplasmic loops; the C- terminal domain is cytoplasmic.

Contributing signatures

Signatures from InterPro member databases are used to construct an entry.
PROSITE profiles