
All Your Base: a fast and accurate probabilistic approach to
base calling

Tim Massingham∗1, Nick Goldman1

1European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK

Email: Tim Massingham∗- tim.massingham@ebi.ac.uk; Nick Goldman - goldman@ebi.ac.uk;

∗Corresponding author

Abstract

The accuracy of base calls produced by the Illumina Genome Analyser is affected by several processes during

sequencing, with laser cross-talk and cluster phasing being prominent. We introduce an explicit statistical model

of the sequencing process that generalises current models of phasing and cross-talk to improve on the best of

current base callers, especially when comparing the number of error-free reads. The novel algorithms presented

are comparable in speed to competitive base-calling methods, do not require training data and are designed to

be robust to gross errors, producing sensible results where other techniques struggle.

Background

There can be little doubt that the vastly increased throughput of Next-Generation Sequencing (NGS)

machines has revolutionised DNA sequencing, but the reads produced are both shorter and less accurate

than those from capillary sequencing and discoveries from NGS are often verified using traditional

sequencing [1]. The challenges to overcome to improve the accuracy and read length of NGS platforms are

different from those that were faced by capillary sequencing [2] and require different strategies to tackle

them. In particular, the phasing process — individual molecules of DNA becoming out-of-step with others
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in the same cluster — is complex and ultimately limits the length of reads which can be obtained from

cluster-based sequencing-by-synthesis methods [2]. Here we develop an explicit statistical model of the

sequencing process, including phasing and other signal-degrading processes. By implementing a base

calling algorithm based on this model, our AYB software is able to produce more accurate reads.

Our statistical model is quite generic and so applicable to all sequencing-by-synthesis and similar platforms

(sequencing-by-ligation, pyrosequencing; see Metzker [3] for a comparison) that rely on large numbers of

clusters consisting of many homogeneous DNA molecules. We concentrate on the Illumina Genome

Analyser (GA-II), both to provide a concrete foundation to aid exposition of the methods and because of

local availability of data for testing and comparison. The mechanics of sequencing-by-synthesis on the

GA-II platform have been described elsewhere in detail [3]. Here we present an overview of an idealised

sequencing process to establish context and terminology for the rest of this paper and then a critique to

show how errors arise.

Fragmented single-stranded DNA is washed through the lanes of a slide, where it attaches and is amplified

to form a sequence-homogeneous cluster of molecules. Sequencing progresses in steps, referred to as cycles,

with each cycle conceptually sequencing one position of DNA. For each cycle, a mixture of

Fluorophore-Labeled Nucleotides (FLNs) is washed through the lanes of the slide and attach to the

molecules in each cluster; attachment of more than one nucleotide in a given cycle is prevented by the

presence of a reversible terminator element on each FLN. A different fluorophore is associated with each of

the four nucleotides (A,C,G,T) and so the nucleotide sequence of the DNA fragments can be uniquely

identified from the fluorescence. After the attachment process has run to completion, the intensity of

fluorescence from each cluster is recorded in four channels, each channel being a combination of

illumination with a specific laser and imaging through a specific filter. Clusters are artificially grouped into

tiles, regions of the lane consistent over cycles, whose size is constrained by the capacity of the imaging

equipment. The terminator elements and fluorophores are then cleaved from the FLNs, setting up each

cluster so the FLNs in the next cycle will attach to the next position of sequence.

After processing the images to pick out individual clusters, the output of the sequencing machine is many

channel × cycle matrices of intensities, one matrix for each cluster. In principle the bases could be called

straight from these intensities but there are several complicating factors [4] that must be dealt with,

cross-talk, phasing and dimming being of particular importance.

Cross-talk is the recording of light from a single fluorophore in multiple channels. This occurs because,

although they are chosen to be distinguishable, the fluorophores’ emission spectra overlap. There is not a
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one-to-one correspondence between channels and FLNs and the relationship between the emission of each

fluorophore and the intensity observed in each channel needs to be ascertained and corrected for.

Phasing refers to the deterioration in relationship between sequencing cycle and sequence position as the

cluster loses coherence: on a given cycle, FLNs may be attaching to different positions on different

molecules within the cluster. There are many possible explanations for phasing: for example, a FLN might

have a defective reversible terminator element leading to the attachment of two FLNs to a molecule on a

single cycle, allowing the molecule to get ahead in the sequencing process (‘pre-phased’), or the cleaving of

the reversible terminator might fail for a cycle so the molecule lags behind when the element is finally

removed (‘post-phased’). A further possible cause of post-phased molecules is the chemistry not running to

completion, resulting in either no FLN being attached that cycle or cleaving failure as previously

mentioned. Finally, molecules within a cluster gradually stop contributing to the total signal, possible

causes being laser damage to the individual molecules or problems reversing the terminator element, and

this leads to a decrease (dimming) in the overall emission observed from each cluster in later cycles of

sequencing.

The cross-talk is a consequence of the physics of fluorophore excitation and methods for estimating it have

already been developed for dye-terminated capillary electrophoresis sequencing platforms [5]. Phasing and

dimming are more specific to NGS methods, the Illumina platform in particular, and have been approached

in a variety of ways. The Illumina base calling software (Bustard) assumes a constant rate of post-phasing

and pre-phasing for all cycles [6], as do the Alta-Cyclic caller [7] and Rolexa [8], whereas BayesCall [6]

allows the phasing at each position of the sequence to depend on several of the neighbouring bases and

Ibis [9] assumes that all information about the phasing at a given cycle is contained in intensities of the

cycles either side. In contrast our method uses a completely empirical model, generalising both cross-talk

and phasing, that allows all aspects of the sequencing process to be determined by the data on a

run-by-run, indeed tile-by-tile basis. This model is unique to AYB and incorporates effects such as

cycle-wise variation in cross-talk and allows context-specific phasing rates that may account for some of the

reported sequence specific errors in GC rich reads [10,11].

Results and Discussion

In a recent comparison [4], Ledergerber and Dessimoz compared several different base callers and Ibis [9]

was clearly the most accurate and considerably quicker than any comparable base caller. While Näıve

Bayescall [12] is almost as accurate as Ibis and boasts a much improved base calling time over the original
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Bayescall algorithm [6] (37 min. compared to the 2266 min. for 300K reads, respectively, for Ledergerber

and Dessimoz’s example), this is still 24× longer than Ibis and requires an already trained model to be

available (Ledergerber and Dessimoz report 1842 min. for training). Despite its considerable improvement

over the original algorithm, the computational requirements of Näıve Bayescall restrict its use and, since it

is also strictly dominated by Ibis in both accuracy and speed, we do not include it in the comparisons

below. To quantify the performance of AYB, we therefore use Bustard and Ibis as comparators to represent

standard practice (Bustard, version varying depending on age of data) and the current state-of-the-art

(Ibis version 1.1.5).

Bustard is the standard base calling software for the Illumina platform and a detailed description of the

algorithm is given in [6]. Ibis uses a machine learning approach to base calling, training a Support Vector

Machine (SVM) at each cycle on the intensities of the current, previous and next cycles. The SVM is

trained on true calls for some subset of the data, and these are estimated by mapping Bustard calls back to

the reference; the trained SVMs are specific to given read lengths and cluster densities and may also

incorporate artifacts that are specific to given run. If sequencing de novo then correct calls may not be

available but an SVM from a similar run could be used, with potential reduced performance, or a small

amount of a known genome could have been ‘spiked-in’ and the SVM trained using these reads. Ibis was

trained by mapping the Bustard calls for a training set to the reference genome using the default aligner (a

modified version of SOAP [13]), the training set comprising every tenth tile starting from the fifth for our

full lane sets of data (B. pert., BGI and Illumina) and all reads for the reduced sets (φX174 L2, φX174 L4,

φX174 L6, Ibis Test and HiSeq; see below for full details of test data sets).

Here we compare the three base callers using six sets of data of varying read lengths, cluster densities and

vintage typical of everyday use and of our extensive testing. The data sets are summarised in table 1. The

callers were compared by both the percentage of reads that map to the reference genome and the

percentage of reads that map back with no mismatches (‘perfect’ calls). The BWA short read aligner [14]

was used to map reads back to the appropriate reference genome (edit distance of five) for all comparisons

in this paper, having been chosen for its speed and its ability to deal with insertions and deletions.

The following subsections describe features of each set of data and compare the performance of the base

callers in more detail but a general summary is provided in table 2. Table 3 shows the time taken for both

the model training and base calling steps where appropriate. Times are not given for Bustard since these

calls are produced as part of the sequencing process and so are essentially free.
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φX174, 76 cycle and 51 cycle

Two test sets from the bacteriophage φX174 were used: nine tiles each from three lanes of 76 cycle data

produced by the Sanger Institute and differing in cluster density (named φX174 L2, φX174 L4, φX174 L6),

and a decimated run containing 200K clusters of 51 cycle data that is distributed as a test set with

Ibis [15] (Ibis Test). Reads from the 27 tiles from the Sanger Institute were aligned against a

SNP-corrected genome (two SNPs corrected), such a correction being possible because of the high coverage

produced by these tiles. Reads called from the Ibis Test set were mapped to the genome distributed with

it. Given the small number of clusters in the Ibis Test set, it was analysed as whole with AYB rather than

on a tile by tile basis.

Both AYB and Ibis improve the number of mapped reads over Bustard by a small amount, with Ibis

generally producing a few tenths of a percent more (table 2). The differences between AYB and Ibis are

statistically significant only for the φX174 L4 and Ibis Test data sets. In contrast, AYB always produces

several percent more perfect reads than Ibis, which itself produces several percent more than Bustard. All

these differences represent an appreciable fraction of all reads which may have consequences for

down-stream analysis since the per-mapped-base error rate for AYB is between 80% and 90% of that for

Ibis (82%, 90%, 86% and 85% for the φX174 L2, φX174 L4, φX174 L6 and Ibis Tests sets respectively).

The improvement in error rate of AYB over Ibis and Bustard for a variety of mapping criteria is shown

graphically in figure 1, AYB almost always having a lower percentage error than the other base callers.

Bordetella pertussis, 76 cycle paired-end

A second comparison was based on a data set comprising an entire lane (100 tiles) of 76-cycle paired-end

reads from the coccobacillus Bordetella pertussis (data sets denoted B. pert./1 and B. pert./2 for the two

paired ends, respectively) , using the complete genome of the Tohoma I strain as a reference. The tiles

from this run showed a large variation in the number of clusters, ranging from 345 to 82,000, with the tiles

close to the ends of the flow cell containing fewer clusters. The sequence produced was generally of low

quality, with Bustard producing an error rate of 50% for the final five bases of the first end of the

read-pairs, which suggests that a problem occurred during the sequencing. Oddities in the cross-talk

matrix, the channels corresponding to A and C nucleotides being noticeably brighter than those

corresponding to G and T, suggest that there may have been illumination problems with one of the lasers.

Because of the problems with this run and the presence of polymorphisms relative to the reference genome,

it provides a useful comparison between the base callers when problems occur.
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Mapping back to the reference revealed a marked difference in base-caller performance (table 2): AYB

produced more than four times as many perfect reads as Bustard (1,133k vs. 265k reads) and 1.5 times as

many as Ibis (752k reads) for the second end of the read-pairs. AYB produces 56% more mapped reads

than Bustard and 13% more than Ibis. The increased number of perfect and close to perfect reads

produced by AYB has real consequences for down-stream analysis, with the genome being covered to an

average depth of 29.3× for AYB, 9.5× for Bustard and 21.7× for Ibis. Greater coverage means more

confident SNP and variant detection, which in turn leads to improved mapping of reads. For the first end

of the read, AYB produces a greater number of perfect reads (176k reads) than Bustard (108k) or Ibis

(133k) and 59% and 17% more mapped reads than Bustard or Ibis, respectively.

As well as mapping to a reference genome, the length of contigs produced by de novo assembly is a useful

guide to the quality of reads produced and of relevance in cases where a reference is not available.

Applying Velvet [16] to the second end of the B. pertussis paired-end reads (kmer length 31; automatic

coverage cut off; default options otherwise) produces a N50 contig length of 6690 bases for the AYB reads;

the reads from both Bustard and Ibis produce much shorter contigs on average, with N50 lengths of 2029

and 4473 bases, respectively.

These results are further illustrated in figure 2, along with the same data trimmed to the first 50 bases to

show that AYB still produces more accurate reads even after the later (worst) cycles have been discarded

(again, results in table 2). The per-mapped-base error rates are shown in figure 1, AYB having a lower

error rate than Ibis and Ibis having a lower error rate than Bustard for B. pert./2 and both trimmed data

sets. B. pert./1 shows a different pattern with the three callers having about the same error rate, but this

should be interpreted in the light of the huge differences in the number of mapped reads produced by the

base callers: for reads mapping with either no errors or exactly one error, AYB produced 50% more reads

than Ibis, which produced 25% more than Bustard.

Human NA19240, 45 cycle and 51 cycle paired-end

Much of the pilot data for the 1000 Genomes project [17] has been archived and is publicly available for

reanalysis, allowing for a further comparison between the base-callers and showing that AYB can be

usefully applied to improve existing data. Two sequencing runs for NA19240 (Yoruban daughter) were

reanalysed: ERR000479 (9.6 million 45bp paired-end reads, part of ERA000013 by the Beijing Genomics

Institute, referred to as sets BGI/1 and BGI/2) and ERR000610 (14.0 million 51bp paired-end reads, part

of ERA000023 by Illumina Inc., referred to as sets Illumina/1 and /2). The accuracy of the base-calling
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was assessed by mapping to the human reference provided by the 1000 Genomes Consortium, based on

GRCh37. This genome has variants relative to the sample sequenced but their presence penalises all callers

equally. The raw intensities submitted to the archive have apparently been filtered for quality since an

abnormally high proportion of the reads map back to the reference when called with Bustard: 86% for the

BGI run and 97% for the Illumina run. This leaves little scope for other base callers to improve the reads.

Despite the filtering of the data sets, both AYB and Ibis produce slightly more mappable reads than

Bustard (table 2): a 1.92% or 1.97% increase respectively for the BGI data and 0.38% or 0.41% increase for

the Illumina data averaged over both ends of each set. The number of reads produced by Ibis for the first

end of the Illumina set was 12.8 million, 91% of the correct number of reads, whereas the second end of the

same data set produced the correct number of reads. No errors were reported during training or base

calling and repeating the procedure produced an identical result; we were unable to ascertain the source of

the discrepancy. The performance for Ibis is reported pro rata.

Large increases over Bustard are observed for the proportion of reads that match the reference exactly,

AYB showing a clear lead over Ibis on both sets of data with 14.65% and 5.73% increases over Bustard for

the BGI and Illumina sets respectively, compared to increases of 12.74% and 4.42% for Ibis (again

adjusting the Ibis scores pro rata). The superiority of AYB here is surprising as this is not a situation

where it would be expected to do particularly better: the number of cycles, and so phasing, is comfortably

small in both cases. The read length, vintage and error-rate of the BGI run is consistent with the older

“sticky-T” chemistry (incomplete cleavage of the ‘T’ FLN, leading to an increased concentration in later

cycles) and the improvement seen is typical for similar data.

The per-mapped-base error rate for reads produced from all BGI and Illumina data sets by AYB is lower

than that of either Bustard or Ibis for a variety of mapping criteria (figure 1).

HiSeq, 101 cycle paired-end

Illumina Inc. made available to us a decimated set of data produced on an Illumina HiSeq machine,

comprising 7.8 million paired-end reads (8 lanes with a read length of 101 bases) of human sequence with a

φX174 spike-in (approximately 0.43% of reads). Ibis was trained separately for each of the eight lanes,

although cross validating revealed little difference in performance since all lanes were from the same

sequence library. All statistics reported for Ibis are an average over all 8 models and lanes. The reads were

mapped against the reference human genome and that of φX174 and, again, the error rates reported are

slightly inflated due to the genomes sequenced having variants relative to the references.
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Even on the modern HiSeq chemistry AYB and Ibis improve on the base calls produced by Bustard,

although the increase in mapped reads is quite small: 0.32% and 1.18% for the first end or Ibis and AYB,

respectively. Larger improvements are seen for the number of perfect reads where both base callers improve

on Bustard by several percent (3.75% for Ibis, 6.98% for AYB) so AYB improves on Ibis by almost as much

as Ibis improves on Bustard. Greater improvements are seen for AYB on the second end of these reads,

with an 11.63% increase over Bustard in the number of perfect reads. We were unable to get Ibis to train

on the second end of the reads so results are not available.

For the HiSeq data sets, the per-mapped-base error rate for reads produced by AYB is lower than that of

either Bustard or Ibis for a variety of mapping criteria (figure 1).

Quality scores

Looking only at per-mapped-base error rates does not tell the whole story of base caller accuracy. Some

reads are produced from extremely clean intensities whereas others may have been extracted from very

noisy data, and base callers assign each base a quality score to indicate their confidence in that call.

Typically, the quality score is a discrete value related to the probability that the call is correct.

Given a set of mapped reads, the actual proportion of bases in error can be found for each (estimated)

quality value assigned by the base caller; these proportions can be used to calculated empirical quality

values to which the estimated values can be compared to assess the accuracy of calibration. If the

estimated quality values were perfectly calibrated then they would agree, to within sampling error, with

the empirical quality values (a linear relationship with unit slope and zero intercept).

The accuracy of calibration for the AYB, using a calibration function with constants derived from φX174

L2, and Ibis base callers is compared in figure 3 on the Ibis Test data set. Both base callers produce scores

that are fairly reliable for the majority of the quality range, being close to linear with a slight tendency to

overestimate confidence in low-quality bases. The calibration of extremely high and low quality calls for

Ibis is unreliable but, as evidenced by the frequency at which such qualities occur and the width of the

99% confidence intervals, bases with these scores are in the tail of the distribution and so occur rarely. The

histogram of the frequency that a particular quality score is assigned for AYB has a noticeable skew

towards higher values whereas the histogram for Ibis has a more gaussian nature with a lower median.

The Root Mean Squared (RMS) error between the estimated and empirical qualities, weighted by the

number of bases assigned to each category, has previously been used to measure the accuracy of

calibration [18]. The RMS criterion is not ideal since it penalises poor calibration of low-quality bases as
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much as similar errors for the more important high quality bases, and over-estimation of quality is

penalised the same as under-estimation despite these two types errors having different consequences for

down-stream analysis since over confidence in a erroneous result will tend to lead to a false positive

whereas under confidence in a true result is conservative. The alternative ‘Sp’ criterion, inspired by

information theoretic considerations, has been suggested to overcome these flaws (Richard Durbin,

personal communication). Here we define a modified form, S̄p.

The S̄p criterion is constructed so that its maximum occurs when the calibration is exactly correct and its

value at this maximum is equal to the average quality score. The criterion is

S̄p =
∑

a naqa + 10
ln 10na

(
1− 10(qa−q∗a)/10

)∑
a na

(1)

where the discrete range of quality values is indexed by a and a base caller assigns na bases to quality qa,

for which the empirical quality is q∗a. Notice that the second term of the numerator is negative when the

quality is over-estimated and its magnitude increases exponentially, whereas the ‘bonus’ for making a

conservative prediction is bounded.

The quality scores produced by the three base-callers for all our sets of data are compared in table 4 using

both the RMS and S̄p criteria. Qualities were not available for Bustard on the Ibis Test data set and Ibis

failed to process the second end of the HiSeq data set. Only Ibis performs uniformly well under both of

these criteria, as is expected given that it was trained on the data it was calling or similar (see individual

discussion of each data set, above, for details) and should really be compared to recalibrated Bustard and

AYB data. The results for AYB may be considered adequate, especially on the four sets (φX174 L2, φX174

L4, φX174 L6 and Ibis Test) which are similar to the one from which its calibration table was obtained

(φX174 L2), but there is scope for improvement. Bustard’s scores highlight the desirability of

incorporating run-specific recalibration into analysis pipelines; the often poor calibration of its raw scores

has already been noted [19]. The column AYB∗ in table 4 shows how AYB improves if run-specific

calibration is used, the constants for the calibration function derived from the same subsets of tiles that

Ibis was trained on and so producing comparable RMS and S̄p scores.

The maximum value, S̄pMax, of S̄p assuming perfect calibration is also shown in table 4 as a measure of

the maximum amount of information that could be extracted from the base calls assuming further,

probably reference-based, calibration. For these scores, Bustard outperforms Ibis, with the sole exception

of the first end of the B. pertussis data set, in complete contrast to their relative performance for the other

criteria. While Ibis makes fewer base calling errors than Bustard, it does not do such a good job of
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separating the bases according to confidence and so the total information content of the calls is lower. AYB

outperforms both Bustard and Ibis, particularly on the four sets of data that are similar to that which its

calibration table was estimated (φX174 L2, φX174 L4, φX174 L6 and Ibis Test).

The ‘Total Quality’ Qtot is a measure of the total information content of the entire set of called bases and

is equal to S̄pMax times the number of mapped bases. As it is a sum rather than an average, the Qtot

criterion allows base callers to compensate in bulk for producing low quality calls. The values of the Qtot

are also shown in table 4 and have trends that are broadly similar to those for S̄pMax, with Ibis generally

have a slightly worse scores than Bustard and AYB performing best for all sets of data. A notable

difference between the S̄pMax and Qtot criteria is that Ibis has a much better Qtot score than Bustard on

both ends of the B. pertussis data, reflecting the increased proportion of mapped reads (see table 2).

Since it was trained on representative data, and so effectively recalibrated using a reference each time, Ibis

has a huge advantage over the other base-callers on the RMS and Sp criteria and this advantage is

evidenced by the poor performance of Bustard and the improvement in AYB’s performance when

run-specific calibration is used. These results should not be taken as a indication of the superiority of the

calibration of Ibis. While the calibration of neither Bustard nor AYB is exceptional, their performance on

the S̄pMax and Qtot criteria, as well as the S̄p scores for AYB on the φX174 sets of data, suggest that

bases from both callers can recalibrated to produce qualities whose informativeness equals or exceeds those

from Ibis.

Conclusions

A particular focus when developing AYB was to make the algorithms robust to problems that might arise

during normal use, so it can be used confidently in cases where other base-callers require manual

intervention to get the best results. The B. pertussis example was presented as such a case; another is data

produced using the TraDIS technique [20] where the first few cycles of every cluster consist of known

identical sequence, causing algorithms that estimate cross-talk from a single early cycle to fail.

The statistical model underlying AYB has several weaknesses that could be addressed in future work. The

model assumes that the descriptive parameters of the sequence process are constant across a tile but this is

only going to be approximately true in practice: differences in illumination (e.g. mode scrambler problems)

and the relative intensities of the two lasers will affect the cross-talk and background noise; also the

expected amount of phasing might be affected by fluctuations in the chemistry. The phasing matrix

represents an average over many clusters and the actual amount of phasing at a particular cluster is
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subject to stochastic variation. The fewer molecules contained in the cluster, the further from the average

it is likely to deviate and this can lead to counter-intuitive consequences as a small cluster that has, by

chance, undergone little phasing will fit the average model as poorly as one that has undergone a lot of

phasing — clusters can then be penalised despite giving clear signal.

Sequence-like errors, for example mutations introduced during sample preparation, short fragments ligating

together or adapter sequence, are essentially invisible to the base-caller and render it impossible to call the

original sequence accurately. Other sources of error may not appear sequence-like: for example,

microscopic particles of dust can get entangled in a cluster and produce bright artefacts for one or more

cycles. Since very bright peaks deviate from the average brightness of the read, AYB penalises these calls

heavily and they rarely contribute to the higher quality base-calls but they also reduce the quality of the

surrounding calls due to over-correction for pre- and post-phasing. Ideally over-bright peaks would be

removed prior to analysis and treated as missing data, with the actual intensity and base-call imputed from

the remaining three intensities and the effect the position has on the neighbouring cycles through the

phasing correction. A similar idea could be used to deal with clusters where intensities are missing

(i.e. unrecorded, perhaps due to image registration problems) for some cycles, producing low quality calls

rather than as at present where they are treated as a cycle with four exactly zero intensities.

A final issue that AYB fails to account for is that of heterogeneous clusters of sequence, a common cause of

which is two clusters merging into each other during the amplification step, since there is an implicit

assumption that each cluster only contains fragments from one particular sequence. The intensities from

such clusters appear to be extremely noisy, far above the stochastic background, and AYB’s criteria to

assess model fit are misled since the effects of both constituent sequences need to be be removed to get the

residual noise. Failure to do so means that the calls from the strongest sequence get penalised for badly

fitting the model; in particular, cycles where the two constituent clusters have the same base appear much

brighter than expected given the intensities from other positions and are thus penalised despite the fact we

should be more confident about these calls. In principle heterogeneous sequence could be explicitly

estimated for each cluster, the relative brightness being used to separate contributions, but this will result

in a loss of power in the majority of cases where the cluster is homogeneous and may not result in

high-quality calls otherwise.

Despite being significantly better than those produced by Bustard, the calibration of quality values for

AYB are worse than might be desired and improvements in the scores produced could be the subject of

further work. As for Bustard, and indeed all other base callers, we recommend that the qualities produced
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by AYB should be recalibrated as part of any analysis pipeline. The superiority of AYB on both the

SpMax and Qtot criteria suggest that such recalibration would be fruitful. Where a good quality reference

is not available, recalibration based on reads from a spiked-in known genome is a promising approach that

could be taken advantage of. Such spike-in data may also help with convergence and improve the estimate

of the interaction matrix since it provides a set of reads whose sequence does not have to be estimated.

The speed at which tiles can be analysed is extremely important given the vast amount of data produced

by current and future platforms. AYB is much quicker than many competitive base callers, taking only a

few minutes to analyse each tile on ordinary computing hardware and of comparable speed to Ibis, the

most accurate alternative base caller (table 3).

Even AYB’s speed could be prohibitive if computing resources are limited. There are, however, avenues to

increase the speed of AYB with possible trade-offs against accuracy. As noted previously, AYB assumes

that the sequencing process is constant within a tile and this assumption could be to strengthened to

assuming it is constant across multiple tiles or across lanes, a similar assumption to that which Bustard

and other base calling programs implicitly make when they train or estimate parameters on a subset of the

data. The parameters describing the sequencing process could be estimated from a subset of data and then

held fixed so AYB need only perform a base calling step for the majority of the clusters with a considerable

reduction in processing time. The major bottleneck for AYB is processing the raw intensities for each

cluster, a step that is repeated every iteration and is quadratic in the number of cycles, and speeding up

this calculation would greatly accelerate the algorithm. One potential approach would be to assume that

the interaction matrix A (see Methods) is sparse, the intensities at one cycle only depending on the

sequence at nearby cycles for example.

AYB is more accurate than other methods of base-calling. In comparison with the leading competitor,

Ibis [9], it generally gives similar or improved performance in the number of mapped reads, and in our tests

it always performed considerably better in the number of perfect (error-free) reads (table 2) and almost

always achieves a lower per-mapped-base error rate (figure 1). As the yield from sequencing machines

increases, speed of analysis becomes important and our base-calling method offers a unique combination of

speed and accuracy. Such a combination is ideally suited for use with more recent ‘personal’ platforms,

such as Illumina’s MiSeq [21], which are aimed at smaller institutes and research groups who will be

interested in a diverse range of organisms for which a good reference genome is not likely to be available.

In addition to its speed and accuracy, AYB has two other desirable properties. First, it does not require

training data so calls can be made where a reference sequence is unknown. Second, it uses robust
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statistical methods to limit undesirable consequences of gross errors in a few clusters.

The AYB base-calling software is written in C and available under the GPL v. 3 licence from

http://www.ebi.ac.uk/goldman-srv/AYB/. A set of utilities for extracting and manipulating CIF format

intensity data files, under the same licence as AYB, is available from

http://www.ebi.ac.uk/goldman-srv/ciftools/.

Methods

The two major differences between AYB and other base-callers are its empirical model of the sequencing

process, potentially allowing the intensities at a given cycle to depend on the entire sequence rather than

just a few neighbouring cycles, and its focus on robust algorithms so that sensible base calls are still made

even when problems have occurred during a run. Here we describe the underlying statistical model used by

AYB, the method of estimation and the techniques used to make the procedure robust.

The foundation of AYB is a mechanistic model of the sequencing process, relating what is observed at each

cycle to the underlying sequence of nucleotides. Clusters are analysed in groups, the natural such group

being a tile, with the interaction between cycles assumed to be constant and common to all clusters within

each group. Other parameters such as the luminescence and the sequence are specific to each cluster.

Firstly we describe a simple model of how the observed intensities might be related to the underlying

sequence and then show how AYB generalises it.

Each cluster (indexed by i) is considered to contain homogeneous sequence, represented by the

base× position matrix Si whose (b, j) entry is one if the base at the jth position of the sequence is base ‘b’

or zero otherwise. Each column of Si therefore contains exactly one non-zero entry. The amount of light

emitted by a cluster in a given cycle is proportional to the number of FLNs bound to the cluster, which in

turn is proportional to the number of molecules in the cluster; this cluster-specific scaling is represented by

the scalar λi, referred to as the luminescence since it also incorporates a factor representing the intensity of

light incident on the cluster and implicitly models variation in incident radiation across the slide.

Due to phasing, the molecules within a cluster lose synchronicity with each other and the relationship

between position and cycle becomes blurred; the procession from one cycle to the next of an average

cluster is described by the position× cycle phasing matrix P . Each column of P corresponds to one cycle

and describes the distribution of sequence positions where the FLNs bind, so the (j, k) entry is the relative

proportion of FLNs bound to position j of the sequence on cycle k of the sequencing process. As

sequencing progresses, the signal decreases as molecules randomly become inactive and stop contributing
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(dimming) and this is incorporated into P by scaling its columns so each sums to the proportion of

molecules in the cluster expected to be still active. An ideal P would have ones down its leading diagonal

with all other elements being zero; a good P will be dominated by its diagonal and each column sum will

be close to one. Elements of P are non-negative, and its column sums are ≤ 1.

Finally, the emissions from each cluster are observed via the four channels and the cross-talk, the

relationship between fluorophore emission and what is observed in each channel, is represented by a

channel × base (4× 4) matrix M . Column b of M describes the strength of signal in each of the four

channels for a unit emission of the FLN b. In principle the cross-talk is determined by the physics of

system, and so it is assumed to be the same for all cycles.

Putting together all the components of the sequencing process model described above, the observed

intensities Ii (a channel × cycle matrix) for cluster i is related to the underlying sequence by the

relationship

Ii = λiMSiP +N + εi (2)

where N is systematic background noise for all clusters and εi is the residual error for the fit to the

intensities, an observation of a random variable with expectation zero. Both N and εi are channel × cycle

matrices. Note that the number of channels is equal to the number of bases and that the number of

positions is equal to the number of cycles, so both M and P are square matrices. Equation 2 can be

expressed to show that the observed intensities are a linear function of the sequence

vec Ii = λi

(
P t ⊗M

)
vecSi + vecN + vec εi

where vec is the operator that forms a vector from a matrix by stacking its columns in order , P t is the

transpose of P and ⊗ is the Kronecker product of two matrices. AYB generalises this model by assuming a

general linear relationship between the sequence and the intensities,

vec Ii = λiA vecSi + vecN + vec εi (3)

where A is the interaction matrix, a (channel × cycle)× (base× position) matrix describing the effect that

specific bases at each cycle have on the intensities for all cycles. Note that A allows for the cross-talk to

vary between cycles and for the rate of phasing to depend on previous bases.

The statistical model described by equation 3 could be fitted to the raw intensity data using a variety of

criteria (maximum likelihood, Bayesian techniques, etc.) but we chose a least squares criterion using an

iterative approach. The major reasons for the use of least squares are that analytic solutions exist for many
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of the steps of the iteration, making it computationally efficient, and that the simple Iteratively reWeighted

Least Squares (IWLS) technique can be used to fit the model in a manner robust to contamination [22].

The IWLS approach is similar to Ordinary Least Squares (OLS), seeking to minimise the sum of squared

errors over all the clusters, but the squared error for each cluster is weighted and the algorithm proceeds

iteratively with the weights being updated between iterations; each iteration is equivalent to the Weighted

Least Squares (WLS) criterion, which has an analytic solution. The weights are defined by a function of

how well each cluster fits the model relative to the other clusters, so badly fitting clusters (high residual

error) get progressively down-weighted. AYB uses the Cauchy function for weighting but many alternatives

have been described and are summarised in the subsection on ‘Robust Estimation’ in Numerical

Recipes [23].

Given this statistical formulation, the core of the AYB method can be described by the following six steps,

the solution of which will be described in the following sections:

1. Initialise estimates; set all weights to one.

2. Estimate interaction A and systematic noiseN .

3. Estimate cluster-specific luminescence λi.

4. Call bases for each cluster, giving sequence Si.

5. Update weights for all clusters.

6. Iterate steps 2–5 to refine estimates.

7. Assess quality of calls.

1. Initialisation

Initialising to good values greatly helps the speed of the AYB algorithm, reducing the number of iterations

needed until a good solution is found. A good starting value may be available from previous analyses using

the same machine and protocol but, by default, AYB uses the more crude approach of ignoring phasing

and dimming and assuming that the cross-talk is the same at all cycles: if M is a cross-talk matrix then

the initial estimate of the interaction matrix is A0 = ID⊗M where ID is the identity matrix of dimension

cycle× position. An initial cross-talk matrix M can be found from the intensities of an early cycle of the

run [5], making the implicit assumption that phasing does not contribute a significant amount to these

observed intensities, but, since cross-talk is primarily determined by physics and has a similar form on

different runs and machines, AYB instead initialises M to a fixed good value. Systematic noise is initially
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assumed to be absent.

Setting A to A0 and solving equation 3 for λiSi, assuming that the systematic and random noise (N and

εi) are zero, gives a set of corrected intensities from which bases and luminescence can be estimated. The

initial estimate of the base at each position is that which has the greatest intensity, and the luminescence

of the cluster is the mean of the intensities of the called bases.

2. Estimation of the interaction matrix and noise

Equation 3, relating the sequence to the expected intensities, is linear but standard linear regression

techniques produce unstable estimates for the interaction matrix; to see why, notice that any permutation

of the columns of A and rows of Si leaves the intensities unchanged and so, when estimating the

interaction is iterated with base-calling, the solution can jump between permutations. We use generalised

Tikhonov regularisation [24] in a weighted least squares solution for A and N to favour there being no

permutation of A and Si.

Defining the adjusted interaction matrix A′ and adjusted sequence S′ by

A′ = (A, vecN) S′ =
(
λi vecSi

1

)
then the regularised weighted least squares estimate Â′ for A′, and thus for A and N , is

Â′
t

=

(
p ID +

∑
i

wiS
′
iS
′t
i

)−1(
pB +

∑
i

wiS
′
i vec Iit

)
(4)

where ID is an identity matrix of the appropriate dimension, p is a constant specifying the strength of

regularisation, and B = (At
0,0) with 0 being a vector consisting of zeros. For convenience, the solution is

regularised towards the value used to initialise the algorithm, although this is not a requirement and other

choices may be more desirable.

There is an arbitrary scaling factor implicit in equation 3, corresponding to the scale that the luminescence

is measured on. If all elements of interaction matrix are doubled and every λi is halved, then the expected

intensities are unchanged. This ambiguity is resolved by scaling the interaction matrix so that its

determinant is one.

3. Estimation of luminescence

The estimation of luminescence for each cluster can be found simply by least squares, using the same

criterion as that used to estimate the interaction and systematic noise. The least squares estimate of the
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luminescence λ̂i of each cluster is

λ̂i =
vecSt

iA
t vec Ii

vecSt
iA

tA vecSi

which is an ordinary least squares estimate since the weights used for the estimation of the interaction

matrix are cluster-specific and so cancel.

4. Base calling

As well as being linear in the interaction matrix, the observed intensities in equation 3 are also a linear

function of the sequence. As described, equation 3 assumes that each element of the random error is

independent and identically distributed (IID) but this is not found to be the case in real data (results not

shown). The violation of the IID assumption is not a problem when estimating the interaction matrix,

since these estimates are produced from a large number of independent clusters and so the random error is

small, but is much more significant when trying to estimate the sequence since there are many fewer,

dependent, observations. Forcing the IID assumption onto the random noise produces poor base calls

(results not shown) and so correlation between the elements of εi must be taken into account and the

sequence that minimises the generalised least squared error must be found.

Intensities after correction for interaction and systematic noise are defined to be

Ci = A−1 vec (Ii −N)

and the sequence that minimises the generalised least square error of equation 3 also minimises the

generalised least square error of the same relation written in terms of the corrected intensities Ci. This

latter formulation is more convenient to work with. Finding the minimum generalised least square is a type

of constrained binary quadratic programming problem and so difficult to solve exactly. Instead of solving

directly, we make the additional assumption that each read position only depends on its immediate

neighbours and so most positions are conditionally independent of each other. This dependence structure

requires that the inverse of the covariance matrix is block tridiagonal; that is, it consists of a grid of

base× base matrices and this grid is tridiagonal. The maximum likelihood estimate of the required

covariance matrix is found by numerical optimisation (conjugate gradient algorithm) of the log-likelihood

function parametrised in terms of the Cholesky factorisation of the matrix; full details are contained in the

supplementary material.

The structure of the inverse covariance matrix means that the log-likelihood for a cluster i having the

sequence s0, s1, . . . , sn can be written as k+
∑n

j=1 aj,sj ,sj+1 for suitably chosen tensor af,g,h and a constant
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k, and so is a one-dimensional Gibbs field. The classic Viterbi and Forward/Backward dynamic

programming algorithms can be used to find the most likely sequence or the posterior distribution of bases

at each position.

5. Updating weights

The weighting of the clusters plays an important part in making the AYB method robust to contamination

and other misleading observations, reducing their influence on the parameter estimates. The weight for

each cluster is calculated, after all model parameters have been fitted, using the Cauchy function so

wi = 1/(1 + Li/2µ) where Li is the least square error for cluster i and µ is a measure of the central trend

of the Li (their mean, for example). In contrast to OLS, where every cluster would receive a weight of one,

this weighting function means that only perfect observations, those with a least square error of zero,

receive full weight whereas worse-fitting observations receive progressively lower weights.

6. Iteration and termination

As the luminescence and individual bases are estimated (steps 3–4 above) using a different criterion to that

used to estimate the interaction matrix (step 2), the least squares error is not guaranteed to decrease when

the parameter estimation and base calling steps are iterated. Theoretically this could lead to problems

with convergence but this was not found to be the case, a small number of cycles sufficing to get good

estimates. Numerical experiments suggest that three to five iterations are sufficient, with little change in

accuracy for addition iterations (results not shown).

7. Assessment of quality

To differentiate between good and bad reads, each base is assigned a quality score — a measure of the

probability that it has been correctly called. Commonly these are reported as Phred scores:

QPhred = −10 log10 e, where e is the probability of a base being incorrect [25]. It is trivial to convert these

scores to and from probabilities, so one only needs to assess the probability of each call being incorrect.

A quality score should combine two pieces of information: the relative confidence that a call is correct, and

whether the model is a good representation of the data and can reliably assess base confidence. We treat

base calling as a model selection problem, choosing between the four models ‘A’, ‘C’, ‘G’ and ‘T’ for each

cycle of each cluster, and apply Bayes theorem to get the posterior probability pi;bj that the base at
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position j in cluster i is b:

pi;bj =
πbfi;bj∑

x∈{A,C,G,T} πxfi;xj
(5)

where fi;xj = (1 + Li;xj)−(1+n∗)/2 is the (scaled) probability density of the observed intensities, Li;xj is the

least square error for cluster i given that the base at position j is x, and πx is the prior probability of base

x. The required least squared errors can be calculated for all bases and positions simultaneously using a

Forwards/Backwards modification of the Viterbi algorithm used to find the best sequence of bases (step 4

above). The particular form of fi;bj comes from assuming that the random error has an elliptical

distribution defined by the Cauchy function, in keeping with our choice of weighting function for the IWLS

estimation. The parameter n∗ should normally be equal to the dimension of the elliptical distribution but,

instead, we use the median of the observed least squared errors as this works better by helping to correct

for skews its distribution.

Reads can also be wrong for reasons other than base calling error, a good example of this being polymerase

errors during sample preparation. The net effect of these ‘generalised’ errors is to bound the maximum

possible quality of a call and they are incorporated into AYB’s quality scores as a constant probability of

error independent of the probability that the base was called incorrectly. The final probability that a base

is correct, incorporating the notion of generalised error, is p∗i;bj = (1− ε) pi;bj where ε is the constant

probability of a generalised error.

Despite the methods incorporated into AYB being robust and attempts being made to compensate for

effects of unusual clusters, the quality scores produced may not be accurate because of discord between

AYB’s assumptions and how the sequencing machines actually operate: not every source of error can be

incorporated into the model and the various distributional assumptions made can only be approximate. To

improve concordance, quality scores are calibrated to real data [25] using some form of table look-up or

calibration function. There are many good methods to calibrate quality scores [18,19,25] but, for the

purposes of the comparisons in this paper, we use a simple linear calibration function for AYB and note

that it could be improved upon.

The calibrated quality Qcal(bk) of the base bk at cycle k to its assigned quality by

Qcal(bk) = αbk−1,bk,bk+1 + βQ(bk)

where the base× base× base table α and the constant β are chosen to agree with representative data from

a real sequencing run. We expect these constants to vary with difference machines, chemistries and

experimental protocols and typical values are distributed with the AYB software, based on the sets of data
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analysed within this paper. We provide a tool to produce bespoke constants given a set of mapped data;

however, we reiterate our recommendation that quality scores should be recalibrated using a reference

whenever possible.
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Tables

Name Reference genome Num. reads Read length Paired-end Date sequenced
φX174 L2 φX174 677538 76 no Aug. 2008
φX174 L4 φX174 1299052 76 no Aug. 2008
φX174 L6 φX174 900291 76 no Aug. 2008
Ibis Test φX174 200000 51 no Apr. 2009
B. pert.† B. pertussis Tohama I 4250058 76 yes Dec. 2009
BGI† H. sapiens GRCh37 9611783 45 yes Jul. 2008
Illumina† H. sapiens GRCh37 13974025 51 yes Jun. 2008
HiSeq H. sapiens GRCh37 + φX174 7813098 101 yes Oct. 2010

Table 1: Summary of data sets analysed and reference genomes used for mapping. The individual ends
from paired-end sets are referred to with a suffix indicating the end, for example BGI/1, BGI/2. †These
sets contain a whole lane; other sets have either been decimated (Ibis Test & HiSeq) or contain only a few
tiles (φX174 L2, φX174 L4 and φX174 L6). ‘Date sequenced’ is approximate, representing our best effort to
quantify the vintage of the data.
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Reads mapped, % Reads perfect, %
Bustard Ibis AYB Bustard Ibis AYB

φX174 L2 76.62 78.33 +2.23 78.25 +2.13 55.88 58.94 +5.48 62.29 +11.48
φX174 L4 63.02 66.11 +4.90 65.09 +3.29 40.09 43.08 +7.46 44.74 +11.60
φX174 L6 72.09 74.07 +2.75 74.08 +2.77 51.19 53.34 +4.20 56.00 +9.40
Ibis Test 84.77 88.45 +4.34 88.19 +4.03 44.34 66.14 +49.16 69.32 +56.34
B. pert./1 28.76 39.16 +35.94 45.80 +58.98 2.53 3.14 +23.70 4.13 +62.86
· · · trimmed 77.35 81.06 +4.80 81.14 +4.90 39.52 47.64 +20.55 55.24 +39.79
B. pert./2 34.33 47.41 +38.75 53.50 +55.57 6.22 17.69 +183.98 26.67 +327.97
· · · trimmed 66.54 70.22 +5.53 72.07 +8.31 30.13 40.72 +35.18 48.25 +60.15
BGI/1 87.41 89.01 +1.82 88.85 +1.64 59.62 68.39 +14.70 69.29 +16.22
BGI/2 84.58 86.29 +2.03 86.52 +2.29 55.95 61.90 +10.64 63.30 +13.14
Illumina/1 97.58 97.80† +0.23† 97.85 +0.28 72.55 75.69† +4.33† 76.70 +5.73
Illumina/2 96.29 96.73 +0.46 96.82 +0.55 70.61 73.88 +4.63 74.66 +5.74
HiSeq/1 84.97 85.24 +0.32 85.97 +1.18 60.29 62.55 +3.75 64.50 +6.98
HiSeq/2 79.78 ‡ 81.34 +1.76 49.79 ‡ 55.58 +11.63

Table 2: Performance comparison of Bustard, Ibis and AYB on several sets of reads of varying read length
and chemistry versions. Performance is compared in terms of the percentage of reads mapped back to the
reference with five edits or fewer, and the percentage of reads which perfectly match the reference; the second
figure for Ibis and AYB, where given, is the percentage improvement over Bustard. †Ibis reported a reduced
number of reads for the Illumina/1 dataset (12771737 rather than 13974025); the mapped reads are reported
as a percentage of this rather than the correct number. See text for further details. ‡Ibis failed to process
the second end of the HiSeq data.

Ibis AYB
Training Base calling Total Base calling

φX174 L2 68 2 70 12 -83
φX174 L4 121 4 125 21 -83
φX174 L6 114 3 117 15 -87
Ibis Test 6 4 10 1 -90
B. pert./1 21 13 34 119 +250
B. pert./2 33 21 54 163 +202
BGI/1 126 17 143 96 -32
BGI/2 117 29 146 96 -34
Illumina/1 136 27 163 196 +20
Illumina/2 136 41 177 197 +11
HiSeq/1 94 34 128 276 +116
HiSeq/2 † 274

Table 3: Training and base calling time for Ibis and AYB. AYB does not require training, so only base calling
time is reported. The second figure for AYB is the percentage difference compared to the Ibis total time.
All times are the real time, in minutes, running on four cores of an Intel Xeon L5420 running at 2.5 GHz.
†Ibis failed to train on the second end of the HiSeq data so no time is reported.
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S̄p S̄pMax RMS Qtot, ×109

Bustard Ibis AYB AYB∗ Bustard Ibis AYB Bustard Ibis AYB Bustard Ibis AYB
φX174 L2 -35.0 23.4 31.5 26.1 24.7 32.1 12.4 3.6 2.3 1.0 1.0 1.2
φX174 L4 9.5 22.3 30.1 25.8 23.0 31.0 8.8 2.4 2.5 1.6 1.5 1.9
φX174 L6 -5.6 23.2 31.5 26.8 24.0 32.2 10.1 2.9 2.3 1.3 1.2 1.6
Ibis Test N/A 23.6 30.7 N/A 24.0 32.0 N/A 1.7 3.2 N/A 0.2 0.3
B. pert./1 1.3 21.3 12.0 22.1 20.3 22.5 25.5 8.1 1.8 5.9 1.9 2.8 3.6
· · · trimmed -1.5 17.0 23.0 24.5 23.2 20.3 27.0 9.1 3.1 4.4 3.8 3.5 4.5
B. pert./2 4.9 16.4 23.9 24.2 22.4 20.3 26.6 9.6 1.4 3.7 2.5 3.1 4.4
· · · trimmed -3.7 14.0 23.6 24.5 22.3 19.9 26.7 9.3 2.6 4.0 3.1 3.0 3.9
BGI/1 -29.0 21.6 0.0 22.9 22.7 22.2 24.0 11.3 2.5 8.7 8.6 8.5 8.8
BGI/2 -9.8 20.6 1.0 22.3 22.3 21.2 23.6 11.1 2.5 8.5 8.2 7.9 8.4
Illumina/1 -1.4 22.8 1.3 23.8 24.0 23.2 24.9 9.8 1.9 8.8 16.7 14.8 16.7
Illumina/2 3.4 22.4 3.1 23.7 23.9 22.8 24.9 9.7 1.9 8.6 16.4 15.7 16.5
HiSeq/1 -0.3 24.9 11.6 25.6 25.9 25.8 26.6 9.6 2.7 7.5 17.4 17.3 17.7
HiSeq/2 1.4 N/A 12.4 24.9 25.5 N/A 26.5 9.2 N/A 7.3 16.1 N/A 16.7

Table 4: Assessment of quality score calibration across all our data sets for the three base callers under a
variety of criteria; see text for details. The scores for AYB were calculated using a calibration function with
parameters derived from the φX174 L2 data set; the scores reported under AYB∗ are those achieved using
run-specific calibration on the four large sets of data (see text for details). Quality scores were not available
for Bustard on the Ibis Test data set and Ibis failed to train on the second end of the HiSeq data.

Figures
Figure 1 - Comparison of per-mapped-base error rates

Percentage per-mapped-base error rates for the Bustard, Ibis and AYB base callers compared over several

sets of reads of varying read length and chemistry versions. The height of the bars are the percentage of

bases that differ from the reference genome, conditioned on reads having been mapped with the stated

criteria (a total of 1, . . ., 5 edits relative to the reference). Ibis failed to process the second end of the

HiSeq data so no bars are shown.

Figure 2 - Number of reads mapped to B. pertussis

Number of mapped reads and base substitution errors in 4.2 million reads of 76-cycle paired-end

B. pertussis data relative to a reference genome. The base callers Bustard, Ibis and AYB are compared on

ends 1 and 2 of the reads by the number of differences to the reference, to a maximum of five differences,

with the total percentage of mapped reads displayed at the top of each bar. Results for both the full reads

(left, ‘All 76 cycles’) and reads trimmed to the first 50 cycles (right, ‘First 50 cycles’) are shown.
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Figure 3 - Quality calibration curves for AYB and Ibis

Quality calibration curves for AYB (left) and Ibis (right) on the Ibis Test data set of 200K 50 cycle reads.

For each base-caller, two graphs are superimposed: a line chart with error bars showing how the empirical

quality changes with estimated quality (left axis) and a histogram of how many bases have a given

estimated quality (right axis, as a proportion of mapped bases). The error bars represent 99% confidence

intervals, obtained by transforming the Wilson interval [26] for the proportion into a quality score. On

each graph, straight lines are shown representing perfect correlation between estimated and empirical

qualities (solid) and the best linear weighted fit (dashed).
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