BioModels Database logo

BioModels Database

spacer

BIOMD0000000379 - DallaMan2007_MealModel_GlucoseInsulinSystem

 

 |   |   |  Send feedback
Reference Publication
Publication ID: 17926672
Dalla Man C, Rizza RA, Cobelli C.
Meal simulation model of the glucose-insulin system.
IEEE Trans Biomed Eng 2007 Oct; 54(10): 1740-1749
Department of Information Engineering, University of Padova, I-35131 Padova, Italy.  [more]
Model
Original Model: BIOMD0000000379.origin
Submitter: Ishan Ajmera
Submission ID: MODEL1110030000
Submission Date: 03 Oct 2011 15:33:24 UTC
Last Modification Date: 10 Oct 2014 10:35:41 UTC
Creation Date: 03 Oct 2011 15:39:22 UTC
Encoders:  Ishan Ajmera
set #1
bqbiol:hasProperty Human Disease Ontology diabetes mellitus
set #2
bqbiol:isVersionOf Gene Ontology regulation of insulin secretion involved in cellular response to glucose stimulus
set #3
bqbiol:hasTaxon Taxonomy Homo sapiens
Notes

This a model from the article:
Meal simulation model of the glucose-insulin system.
Dalla Man C, Rizza RA, Cobelli C.IEEE Trans Biomed Eng.2007 Oct;54(10):1740-9. 17926672,
Abstract:
A simulation model of the glucose-insulin system in the postprandial state can be useful in several circumstances, including testing of glucose sensors, insulin infusion algorithms and decision support systems for diabetes. Here, we present a new simulation model in normal humans that describes the physiological events that occur after a meal, by employing the quantitative knowledge that has become available in recent years. Model parameters were set to fit the mean data of a large normal subject database that underwent a triple tracer meal protocol which provided quasi-model-independent estimates of major glucose and insulin fluxes, e.g., meal rate of appearance, endogenous glucose production, utilization of glucose, insulin secretion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. Model results are shown in describing both a single meal and normal daily life (breakfast, lunch, dinner) in normal. The same strategy is also applied on a smaller database for extending the model to type 2 diabetes

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
For more information see the terms of use.
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

Model
Publication ID: 17926672 Submission Date: 03 Oct 2011 15:33:24 UTC Last Modification Date: 10 Oct 2014 10:35:41 UTC Creation Date: 03 Oct 2011 15:39:22 UTC
Mathematical expressions
Rules
Assignment Rule (variable: aa) Assignment Rule (variable: cc) Assignment Rule (variable: EGP) Assignment Rule (variable: V_mmax)
Assignment Rule (variable: U_idm) Assignment Rule (variable: E) Assignment Rule (variable: S) Assignment Rule (variable: I)
Assignment Rule (variable: G) Assignment Rule (variable: HE) Assignment Rule (variable: m_3) Assignment Rule (variable: Q_sto)
Assignment Rule (variable: Ra) Assignment Rule (variable: k_empt) Assignment Rule (variable: U_id) Assignment Rule (variable: U)
Assignment Rule (variable: S_po) Rate Rule (variable: G_p) Rate Rule (variable: G_t) Rate Rule (variable: I_l)
Rate Rule (variable: I_p) Rate Rule (variable: Q_sto1) Rate Rule (variable: Q_sto2) Rate Rule (variable: Q_gut)
Rate Rule (variable: I_1) Rate Rule (variable: I_d) Rate Rule (variable: X) Rate Rule (variable: I_po)
Rate Rule (variable: Y)      
Physical entities
Compartments Species
default G_p G_t I_l
I_p Q_sto1 Q_gut
I_1 I_d X
I_po Y Q_sto2
Global parameters
V_G k_1 k_2 G_b
V_I m_1 m_2 m_4
m_5 m_6 HE_b I_b
S_b S_b_minus k_max k_min
k_abs k_gri f b
d BW k_p1 k_p2
k_p3 k_p4 k_i U_ii
V_m0 V_mX K_m0 p_2U
part K alpha beta
gamma k_e1 k_e2 D
aa cc EGP V_mmax
E S I G
HE m_3 Q_sto Ra
k_empt U_idm U_id U
S_po      
Reactions (0)
Rules (29)
 
 Assignment Rule (name: aa) aa = 5/2/(1-b)/D
 
 Assignment Rule (name: cc) cc = 5/2/d/D
 
 Assignment Rule (name: EGP) EGP = k_p1-k_p2*G_p-k_p3*I_d-k_p4*I_po
 
 Assignment Rule (name: V_mmax) V_mmax = (1-part)*(V_m0+V_mX*X)
 
 Assignment Rule (name: U_idm) U_idm = V_mmax*G_t/(K_m0+G_t)
 
 Assignment Rule (name: E) E = 0
 
 Assignment Rule (name: S) S = gamma*I_po
 
 Assignment Rule (name: I) I = I_p/V_I
 
 Assignment Rule (name: G) G = G_p/V_G
 
 Assignment Rule (name: HE) HE = (-m_5)*S+m_6
 
 Assignment Rule (name: m_3) m_3 = HE*m_1/(1-HE)
 
 Assignment Rule (name: Q_sto) Q_sto = Q_sto1+Q_sto2
 
 Assignment Rule (name: Ra) Ra = f*k_abs*Q_gut/BW
 
 Assignment Rule (name: k_empt) k_empt = k_min+(k_max-k_min)/2*(tanh(aa*(Q_sto-b*D))-tanh(cc*(Q_sto-d*D))+2)
 
 Assignment Rule (name: U_id) U_id = U_idm
 
 Assignment Rule (name: U) U = U_ii+U_id
 
 Assignment Rule (name: S_po) S_po = Y+K*(EGP+Ra-E-U_ii-k_1*G_p+k_2*G_t)/V_G+S_b
 
 Rate Rule (name: G_p) d [ G_p] / d t= EGP+Ra-E-U_ii-k_1*G_p+k_2*G_t
 
 Rate Rule (name: G_t) d [ G_t] / d t= -U_id+k_1*G_p-k_2*G_t
 
 Rate Rule (name: I_l) d [ I_l] / d t= (-m_1)*I_l-m_3*I_l+m_2*I_p+S
 
 Rate Rule (name: I_p) d [ I_p] / d t= (-m_2)*I_p-m_4*I_p+m_1*I_l
 
 Rate Rule (name: Q_sto1) d [ Q_sto1] / d t= (-k_gri)*Q_sto1
 
 Rate Rule (name: Q_sto2) d [ Q_sto2] / d t= (-k_empt)*Q_sto2+k_gri*Q_sto1
 
 Rate Rule (name: Q_gut) d [ Q_gut] / d t= (-k_abs)*Q_gut+k_empt*Q_sto2
 
 Rate Rule (name: I_1) d [ I_1] / d t= (-k_i)*(I_1-I)
 
 Rate Rule (name: I_d) d [ I_d] / d t= (-k_i)*(I_d-I_1)
 
 Rate Rule (name: X) d [ X] / d t= (-p_2U)*X+p_2U*(I-I_b)
 
 Rate Rule (name: I_po) d [ I_po] / d t= (-gamma)*I_po+S_po
 
 Rate Rule (name: Y) d [ Y] / d t= (-alpha)*(Y-beta*(G-G_b))
 
   default Spatial dimensions: 3.0  Compartment size: 1.0
 
 G_p
Compartment: default
Initial amount: 178.0
 
 G_t
Compartment: default
Initial amount: 135.0
 
 I_l
Compartment: default
Initial amount: 4.5
 
 I_p
Compartment: default
Initial amount: 1.25
 
 Q_sto1
Compartment: default
Initial amount: 78000.0
 
 Q_gut
Compartment: default
Initial amount: 0.0
 
 I_1
Compartment: default
Initial amount: 25.0
 
 I_d
Compartment: default
Initial amount: 25.0
 
 X
Compartment: default
Initial amount: 0.0
 
 I_po
Compartment: default
Initial amount: 3.6
 
 Y
Compartment: default
Initial amount: 0.0
 
 Q_sto2
Compartment: default
Initial amount: 0.0
 
Global Parameters (57)
 
 V_G
Value: 1.88
Constant
 
 k_1
Value: 0.065
Constant
 
 k_2
Value: 0.079
Constant
 
 G_b
Value: 95.0
Constant
 
 V_I
Value: 0.05
Constant
 
 m_1
Value: 0.19
Constant
 
 m_2
Value: 0.484
Constant
 
 m_4
Value: 0.194
Constant
 
 m_5
Value: 0.0304
Constant
 
 m_6
Value: 0.6471
Constant
 
 HE_b
Value: 0.6
Constant
 
 I_b
Value: 25.0
Constant
 
 S_b
Value: 1.8
Constant
 
 S_b_minus
Value: -1.8
Constant
 
 k_max
Value: 0.0558
Constant
 
 k_min
Value: 0.0080
Constant
 
 k_abs
Value: 0.057
Constant
 
 k_gri
Value: 0.0558
Constant
 
 f
Value: 0.9
Constant
 
 b
Value: 0.82
Constant
 
 d
Value: 0.01
Constant
 
 BW
Value: 78.0
Constant
 
 k_p1
Value: 2.7
Constant
 
 k_p2
Value: 0.0021
Constant
 
 k_p3
Value: 0.0090
Constant
 
 k_p4
Value: 0.0618
Constant
 
 k_i
Value: 0.0079
Constant
 
 U_ii
Value: 1.0
Constant
 
 V_m0
Value: 2.5
Constant
 
 V_mX
Value: 0.047
Constant
 
 K_m0
Value: 225.59
Constant
 
 p_2U
Value: 0.0331
Constant
 
 part
Value: 0.2
Constant
 
 K
Value: 2.3
Constant
 
 alpha
Value: 0.05
Constant
 
 beta
Value: 0.11
Constant
 
 gamma
Value: 0.5
Constant
 
 k_e1
Value: 5.0E-4
Constant
 
 k_e2
Value: 339.0
Constant
 
 D
Value: 78000.0
Constant
 
  aa
Value: 1.78062678062678E-4
 
  cc
Value: 0.00320512820512821
 
  EGP
Value: 1.87872
 
  V_mmax
Value: 2.0
 
  E  
 
  S
Value: 1.8
 
  I
Value: 25.0
 
  G
Value: 94.6808510638298
 
  HE
Value: 0.59238
 
  m_3
Value: 0.276120406260733
 
  Q_sto
Value: 78000.0
 
  Ra  
 
  k_empt
Value: 0.0554800817258192
 
  U_idm
Value: 0.748772844504839
 
  U_id
Value: 0.748772844504839
 
  U
Value: 1.74877284450484
 
  S_po
Value: 1.76784893617021
 
Representative curation result(s)
Representative curation result(s) of BIOMD0000000379

Curator's comment: (updated: 03 Oct 2011 16:55:02 BST)

Using the parameter values of normal individual,the model reproduces fig 5 of the reference publication.
(The above plot represents the continuous line for the normal subject shown in fig 5)
The model was integrated and simulated using Copasi v4.7 (Build 34).

spacer
spacer