Try the new BioModels platform (beta)
BioModels Database logo

BioModels Database

spacer

BIOMD0000000377 - Bertram2000_PancreaticBetaCells_Oscillations

 

 |   |   |  Send feedback
Reference Publication
Publication ID: 11106596
Bertram R, Previte J, Sherman A, Kinard TA, Satin LS.
The phantom burster model for pancreatic beta-cells.
Biophys. J. 2000 Dec; 79(6): 2880-2892
School of Science, Pennsylvania State University, Erie, Pennsylvania 16563, USA. bertram@sb.fsu.edu  [more]
Model
Original Model: BIOMD0000000377.origin
Submitter: Vijayalakshmi Chelliah
Submission ID: MODEL0911270001
Submission Date: 27 Nov 2009 13:11:20 UTC
Last Modification Date: 28 May 2014 20:48:36 UTC
Creation Date: 29 Sep 2011 22:15:05 UTC
Encoders:  Ishan Ajmera
   Catherine Lloyd
set #1
bqmodel:isDerivedFrom PubMed 1850840
set #2
bqbiol:hasTaxon Taxonomy Homo sapiens
set #3
bqbiol:isVersionOf Gene Ontology type B pancreatic cell development
Gene Ontology type B pancreatic cell proliferation
Gene Ontology regulation of type B pancreatic cell proliferation
set #4
bqbiol:occursIn Brenda Tissue Ontology pancreatic beta cell
Notes

This a model from the article:
The phantom burster model for pancreatic beta-cells.
Bertram R, Previte J, Sherman A, Kinard TA, Satin LS. Biophys J2000 Dec;79(6):2880-92 11106596,
Abstract:
Pancreatic beta-cells exhibit bursting oscillations with a wide range of periods. Whereas periods in isolated cells are generally either a few seconds or a few minutes, in intact islets of Langerhans they are intermediate (10-60 s). We develop a mathematical model for beta-cell electrical activity capable of generating this wide range of bursting oscillations. Unlike previous models, bursting is driven by the interaction of two slow processes, one with a relatively small time constant (1-5 s) and the other with a much larger time constant (1-2 min). Bursting on the intermediate time scale is generated without need for a slow process having an intermediate time constant, hence phantom bursting. The model suggests that isolated cells exhibiting a fast pattern may nonetheless possess slower processes that can be brought out by injecting suitable exogenous currents. Guided by this, we devise an experimental protocol using the dynamic clamp technique that reliably elicits islet-like, medium period oscillations from isolated cells. Finally, we show that strong electrical coupling between a fast burster and a slow burster can produce synchronized medium bursting, suggesting that islets may be composed of cells that are intrinsically either fast or slow, with few or none that are intrinsically medium.

This model was taken from the CellML repository and automatically converted to SBML.
The original model was: Bertram R, Previte J, Sherman A, Kinard TA, Satin LS. (2000) - version02

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
For more information see the terms of use.
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

Model
Publication ID: 11106596 Submission Date: 27 Nov 2009 13:11:20 UTC Last Modification Date: 28 May 2014 20:48:36 UTC Creation Date: 29 Sep 2011 22:15:05 UTC
Mathematical expressions
Rules
Assignment Rule (variable: s1inf) Assignment Rule (variable: minf) Assignment Rule (variable: ICa) Assignment Rule (variable: IK)
Assignment Rule (variable: taun) Assignment Rule (variable: ninf) Assignment Rule (variable: Is1) Assignment Rule (variable: s2inf)
Assignment Rule (variable: Is2) Assignment Rule (variable: Il) Assignment Rule (variable: I1+I2) Rate Rule (variable: V)
Rate Rule (variable: n) Rate Rule (variable: s1) Rate Rule (variable: s2)  
Physical entities
Compartments Species
Compartment V n s1
s2    
Global parameters
Cm Vm VCa gCa
minf sm ICa IK
VK gK lambda tnbar
Vn sn taun ninf
Is1 gs1 s1inf Vs1
ss1 taus1 Vs2 s2inf
ss2 gs2 taus2 Is2
Il gl Vl I1+I2
Reactions (0)
Rules (15)
 
 Assignment Rule (name: s1inf) s1inf = 1/(1+exp((Vs1-V)/ss1))
 
 Assignment Rule (name: minf) minf = 1/(1+exp((Vm-V)/sm))
 
 Assignment Rule (name: ICa) ICa = gCa*minf*(V-VCa)
 
 Assignment Rule (name: IK) IK = gK*n*(V-VK)
 
 Assignment Rule (name: taun) taun = tnbar/(1+exp((V-Vn)/sn))
 
 Assignment Rule (name: ninf) ninf = 1/(1+exp((Vn-V)/sn))
 
 Assignment Rule (name: Is1) Is1 = gs1*s1*(V-VK)
 
 Assignment Rule (name: s2inf) s2inf = 1/(1+exp((Vs2-V)/ss2))
 
 Assignment Rule (name: Is2) Is2 = gs2*s2*(V-VK)
 
 Assignment Rule (name: Il) Il = gl*(V-Vl)
 
 Assignment Rule (name: parameter_1) I1+I2 = Is1+Is2
 
 Rate Rule (name: V) d [ V] / d t= (-(ICa+IK+Il+Is1+Is2))/Cm
 
 Rate Rule (name: n) d [ n] / d t= (ninf-n)/taun
 
 Rate Rule (name: s1) d [ s1] / d t= (s1inf-s1)/taus1
 
 Rate Rule (name: s2) d [ s2] / d t= (s2inf-s2)/taus2
 
   Compartment Spatial dimensions: 3.0  Compartment size: 1.0
 
 V
Compartment: Compartment
Initial amount: -43.0
 
 n
Compartment: Compartment
Initial amount: 0.03
 
 s1
Compartment: Compartment
Initial amount: 0.1
 
 s2
Compartment: Compartment
Initial amount: 0.434
 
Global Parameters (32)
 
 Cm
Value: 4524.0
Constant
 
 Vm
Value: -22.0
Constant
 
 VCa
Value: 100.0
Constant
 
 gCa
Value: 280.0
Constant
 
   minf
Value: 0.0573241758988688
 
 sm
Value: 7.5
Constant
 
   ICa
Value: -2295.26000299071
 
   IK
Value: 1443.0
 
 VK
Value: -80.0
Constant
 
   gK
Value: 1300.0
Constant
 
 lambda
Value: 1.1
Constant
 
 tnbar
Value: 8.3
Constant
 
 Vn
Value: -9.0
Constant
 
 sn
Value: 10.0
Constant
 
   taun
Value: 8.03194764300286
 
   ninf
Value: 0.0322954646984505
 
   Is1
Value: 74.0
 
 gs1
Value: 20.0
Constant
 
   s1inf
Value: 0.00247262315663477
 
 Vs1
Value: -40.0
Constant
 
 ss1
Value: 0.5
Constant
 
 taus1
Value: 1000.0
Constant
 
 Vs2
Value: -42.0
Constant
 
   s2inf
Value: 0.0758581800212435
 
 ss2
Value: 0.4
Constant
 
 gs2
Value: 32.0
Constant
 
 taus2
Value: 120000.0
Constant
 
   Is2
Value: 513.856
 
   Il
Value: -75.0
 
 gl
Value: 25.0
Constant
 
 Vl
Value: -40.0
Constant
 
   I1+I2
Value: 587.856
 
Representative curation result(s)
Representative curation result(s) of BIOMD0000000377

Curator's comment: (updated: 30 Sep 2011 12:50:34 BST)

The model reproduces fig 2 of the reference publication.
The model was integrated and simulated using Copasi v4.7 (Build 34).

Additional file(s)
  • Figure 2:
    This COPASI file reproduces fig 2 of the reference publication,but the time scale needs to be adjusted to get the curation figure
spacer
spacer