BioModels Database logo

BioModels Database

spacer

BIOMD0000000371 - DeVries2000_PancreaticBetaCells_InsulinSecretion

 

 |   |   |  Send feedback
Reference Publication
Publication ID: 11093836
De Vries G, Sherman A.
Channel sharing in pancreatic beta -cells revisited: enhancement of emergent bursting by noise.
J. Theor. Biol. 2000 Dec; 207(4): 513-530
Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.  [more]
Model
Original Model: BIOMD0000000371.xml.origin
Submitter: Vijayalakshmi Chelliah
Submission ID: MODEL0911270002
Submission Date: 27 Nov 2009 13:12:18 UTC
Last Modification Date: 08 Mar 2012 12:39:46 UTC
Creation Date: 28 Sep 2011 21:16:51 UTC
Encoders:  Ishan Ajmera
   Catherine Lloyd
set #1
bqbiol:isVersionOf Gene Ontology insulin secretion
Gene Ontology type B pancreatic cell proliferation
Gene Ontology regulation of type B pancreatic cell proliferation
set #2
bqbiol:occursIn Brenda Tissue Ontology BTO:0000783
set #3
bqbiol:hasTaxon Taxonomy Homo sapiens
Notes

This a model from the article:
Channel sharing in pancreatic beta -cells revisited: enhancement of emergent bursting by noise.
De Vries G, Sherman A. J Theor Biol2000 Dec 21;207(4):513-30 11093836,
Abstract:
Secretion of insulin by electrically coupled populations of pancreatic beta -cells is governed by bursting electrical activity. Isolated beta -cells, however, exhibit atypical bursting or continuous spike activity. We study bursting as an emergent property of the population, focussing on interactions among the subclass of spiking cells. These are modelled by equipping the fast subsystem with a saddle-node-loop bifurcation, which makes it monostable. Such cells can only spike tonically or remain silent when isolated, but can be induced to burst with weak diffusive coupling. With stronger coupling, the cells revert to tonic spiking. We demonstrate that the addition of noise dramatically increases, via a phenomenon like stochastic resonance, the coupling range over which bursting is seen. Copyright 2000 Academic Press.

This model was taken from the CellML repository and automatically converted to SBML.
The original model was: De Vries G, Sherman A. (2000) - version01

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
For more information see the terms of use.
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

Model
Publication ID: 11093836 Submission Date: 27 Nov 2009 13:12:18 UTC Last Modification Date: 08 Mar 2012 12:39:46 UTC Creation Date: 28 Sep 2011 21:16:51 UTC
Mathematical expressions
Rules
Assignment Rule (variable: m_infinity) Assignment Rule (variable: i_Ca) Assignment Rule (variable: i_K) Assignment Rule (variable: n_infinity)
Assignment Rule (variable: i_s) Assignment Rule (variable: s_infinity) Assignment Rule (variable: i_K_ATP) Rate Rule (variable: V_membrane)
Rate Rule (variable: n) Rate Rule (variable: s)    
Physical entities
Compartments Species
Compartment V_membrane n s
Global parameters
tau i_Ca g_Ca V_Ca
m_infinity V_m theta_m i_K
V_K g_K n_infinity V_n
theta_n lamda tau_2 i_s
g_s s_infinity V_s theta_s
tau_s i_K_ATP g_K_ATP p
Reactions (0)
Rules (10)
 
 Assignment Rule (name: m_infinity) m_infinity = 1/(1+exp((V_m-V_membrane)/theta_m))
 
 Assignment Rule (name: i_Ca) i_Ca = g_Ca*m_infinity*(V_membrane-V_Ca)
 
 Assignment Rule (name: i_K) i_K = g_K*n*(V_membrane-V_K)
 
 Assignment Rule (name: n_infinity) n_infinity = 1/(1+exp((V_n-V_membrane)/theta_n))
 
 Assignment Rule (name: i_s) i_s = g_s*s*(V_membrane-V_K)
 
 Assignment Rule (name: s_infinity) s_infinity = 1/(1+exp((V_s-V_membrane)/theta_s))
 
 Assignment Rule (name: i_K_ATP) i_K_ATP = g_K_ATP*p*(V_membrane-V_K)
 
 Rate Rule (name: V_membrane) d [ V_membrane] / d t= (-(i_Ca+i_K+i_K_ATP+i_s))/tau_membrane
 
 Rate Rule (name: n) d [ n] / d t= lamda*(n_infinity-n)/tau_potassium_current_n_gate
 
 Rate Rule (name: s) d [ s] / d t= (s_infinity-s)/tau_s
 
   Compartment Spatial dimensions: 3.0  Compartment size: 1.0
 
 V_membrane
Compartment: Compartment
Initial amount: -65.0
 
 n
Compartment: Compartment
Initial amount: 0.05
 
 s
Compartment: Compartment
Initial amount: 0.025
 
Global Parameters (24)
 
 tau
Value: 20.0
Constant
 
   i_Ca
Value: -7.4446678508483
 
 g_Ca
Value: 3.6
Constant
 
 V_Ca
Value: 25.0
Constant
 
   m_infinity
Value: 0.0229773699100256
 
 V_m
Value: -20.0
Constant
 
 theta_m
Value: 12.0
Constant
 
   i_K
Value: 5.0
 
 V_K
Value: -75.0
Constant
 
 g_K
Value: 10.0
Constant
 
   n_infinity
Value: 1.89405943825186E-4
 
 V_n
Value: -17.0
Constant
 
 theta_n
Value: 5.6
Constant
 
 lamda
Value: 0.8
Constant
 
 tau_2
Value: 20.0
Constant
 
   i_s
Value: 1.0
 
 g_s
Value: 4.0
Constant
 
   s_infinity
Value: 0.00460957217937421
 
 V_s
Value: -22.0
Constant
 
 theta_s
Value: 8.0
Constant
 
 tau_s
Value: 20000.0
Constant
 
   i_K_ATP
Value: 6.0
 
   g_K_ATP
Value: 1.2
Constant
 
 p
Value: 0.5
Constant
 
Representative curation result(s)
Representative curation result(s) of BIOMD0000000371

Curator's comment: (updated: 28 Sep 2011 23:48:52 BST)

The model reproduces fig 1 (a)of the reference publication.The model was integrated and simulated using Copasi v4.7 (Build 34).

spacer
spacer