Try the new BioModels platform (beta)
BioModels Database logo

BioModels Database

spacer

BIOMD0000000368 - Beltrami1995_ThrombinGeneration_C

 

 |   |   |  Send feedback
Reference Publication
Publication ID: 7568009
Beltrami E, Jesty J.
Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation.
Proc. Natl. Acad. Sci. U.S.A. 1995 Sep; 92(19): 8744-8748
Department of Applied Mathematics and Statistics, State University of New York, Stony Brook 11794, USA.  [more]
Model
Original Model: BIOMD0000000368.origin
Submitter: Michael Schubert
Submission ID: MODEL1108260011
Submission Date: 26 Aug 2011 16:49:46 UTC
Last Modification Date: 09 Oct 2014 17:25:34 UTC
Creation Date: 14 Jun 2011 10:56:31 UTC
Encoders:  Michael Schubert
set #1
bqbiol:hasTaxon Taxonomy Eukaryota
set #2
bqbiol:is Gene Ontology blood coagulation
Notes

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
For more information see the terms of use.
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

Model
Publication ID: 7568009 Submission Date: 26 Aug 2011 16:49:46 UTC Last Modification Date: 09 Oct 2014 17:25:34 UTC Creation Date: 14 Jun 2011 10:56:31 UTC
Mathematical expressions
Rules
Rate Rule (variable: Z1) Rate Rule (variable: Z2) Rate Rule (variable: Z3) Rate Rule (variable: Z4)
Rate Rule (variable: E1) Rate Rule (variable: E2) Rate Rule (variable: E3) Rate Rule (variable: E4)
Physical entities
Compartments Species
compartment_1 Z1 Z2 Z3
Z4 E1 E2
E3 E4  
Global parameters
mu1 mu2 mu23 mu3
mu4 k1 k2 k3
k4 mu5    
Reactions (0)
Rules (8)
 
 Rate Rule (name: Z1) d [ Z1] / d t= (-(mu1*E2+mu5*E4))*Z1+k1*E1
 
 Rate Rule (name: Z2) d [ Z2] / d t= (-mu2)*E1*Z2+k2*E2
 
 Rate Rule (name: Z3) d [ Z3] / d t= (-(mu23*E2+mu3*E4))*Z3+k3*E3
 
 Rate Rule (name: Z4) d [ Z4] / d t= (-mu4)*E3*Z4+k4*E4
 
 Rate Rule (name: E1) d [ E1] / d t= (mu1*E2+mu5*E4)*Z1-k1*E1
 
 Rate Rule (name: E2) d [ E2] / d t= mu2*E1*Z2-k2*E2
 
 Rate Rule (name: E3) d [ E3] / d t= (mu23*E2+mu3*E4)*Z3-k3*E3
 
 Rate Rule (name: E4) d [ E4] / d t= mu4*E3*Z4-k4*E4
 
   Spatial dimensions: 3.0  Compartment size: NaN
 
   Z1
Compartment: compartment_1
Initial concentration: 0.5
 
   Z2
Compartment: compartment_1
Initial concentration: 10.0
 
   Z3
Compartment: compartment_1
Initial concentration: 10.0
 
   Z4
Compartment: compartment_1
Initial concentration: 100.0
 
   E1
Compartment: compartment_1
Initial concentration: 0.0
 
   E2
Compartment: compartment_1
Initial concentration: 0.0
 
   E3
Compartment: compartment_1
Initial concentration: 0.0
 
   E4
Compartment: compartment_1
Initial concentration: 0.0
 
Global Parameters (10)
 
   mu1
Value: 1.0
Constant
 
   mu2
Value: 0.1
Constant
 
   mu23
Value: 0.1
Constant
 
   mu3
Value: 0.1
Constant
 
   mu4
Value: 0.1
Constant
 
   k1
Value: 1.0
Constant
 
   k2
Value: 1.0
Constant
 
   k3
Value: 5.0
Constant
 
   k4
Value: 5.0
Constant
 
   mu5
Value: 1.0
Constant
 
Representative curation result(s)
Representative curation result(s) of BIOMD0000000368

Curator's comment: (updated: 15 Sep 2011 14:45:40 BST)

Reproduction of figure 3 of the article (submodel C)

Integration with Copasi and plotting with Matplotlib.

spacer
spacer