BioModels Database logo

BioModels Database

spacer

BIOMD0000000312 - Tyson2003_Perfect_Adaption

 

 |   |   |  Send feedback
Reference Publication
Publication ID: 12648679
Tyson JJ, Chen KC, Novak B.
Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell.
Curr. Opin. Cell Biol. 2003 Apr; 15(2): 221-231
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. tyson@vt.edu  [more]
Model
Original Model: BIOMD0000000312.xml.origin
Submitter: Lukas Endler
Submission ID: MODEL1102100000
Submission Date: 10 Feb 2011 02:38:10 UTC
Last Modification Date: 06 Apr 2014 20:08:40 UTC
Creation Date: 10 Feb 2011 02:38:32 UTC
Encoders:  Lukas Endler
set #1
bqbiol:hasTaxon Taxonomy cellular organisms
set #2
bqbiol:hasProperty Mathematical Modelling Ontology MAMO_0000046
set #3
bqbiol:isVersionOf Gene Ontology regulation of binding
Notes

This is an SBML implementation the model of the perfect adaptor (figure 1d) described in the article:
Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell.
Tyson JJ, Chen KC, Novak B. Curr Opin Cell Biol. 2003 Apr;15(2):221-31. PubmedID:12648679; DOI:10.1016/S0955-0674(03)00017-6;

Abstract:
The physiological responses of cells to external and internal stimuli are governed by genes and proteins interacting in complex networks whose dynamical properties are impossible to understand by intuitive reasoning alone. Recent advances by theoretical biologists have demonstrated that molecular regulatory networks can be accurately modeled in mathematical terms. These models shed light on the design principles of biological control systems and make predictions that have been verified experimentally.

Originally created by libAntimony v1.4 (using libSBML 3.4.1)

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
For more information see the terms of use.
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

Model
Publication ID: 12648679 Submission Date: 10 Feb 2011 02:38:10 UTC Last Modification Date: 06 Apr 2014 20:08:40 UTC Creation Date: 10 Feb 2011 02:38:32 UTC
Mathematical expressions
Reactions
r1 r2 r3 r4
Rules
Assignment Rule (variable: S)      
Physical entities
Compartments Species
env R X S
Global parameters
k1 k2 k3 k4
tau      
Reactions (4)
 
 r1  → [R];   {S}
 
 r2 [R] → ;   {X}
 
 r3  → [X];   {S}
 
 r4 [X] → ;  
 
Rules (1)
 
 Assignment Rule (name: S) S = 1*floor(time/tau)
 
  Spatial dimensions: 3.0  Compartment size: 1.0
 
 R
Compartment: env
 
 X
Compartment: env
Initial concentration: 0.0
 
  S
Compartment: env
 
Global Parameters (5)
 
 k1
Value: 2.0   (Units: per_s)
Constant
 
 k2
Value: 2.0   (Units: per_M_per_s)
Constant
 
 k3
Value: 1.0   (Units: per_s)
Constant
 
 k4
Value: 1.0   (Units: per_s)
Constant
 
 tau
Value: 4.0   (Units: s)
Constant
 
Representative curation result(s)
Representative curation result(s) of BIOMD0000000312

Curator's comment: (updated: 10 Feb 2011 03:54:29 GMT)

Time course showing the concentrations of R, S and X as in figure 1d of the original publication. The simulation was performed and the results plotted using Copasi 4.6.

spacer
spacer