Try the new BioModels platform (beta)
BioModels Database logo

BioModels Database

spacer

BIOMD0000000297 - Ciliberto2003 - Swe1 / CDK network model for morphogenesis checkpoint

 

 |   |   |  Send feedback
Reference Publication
Publication ID: 14691135
Ciliberto A, Novak B, Tyson JJ.
Mathematical model of the morphogenesis checkpoint in budding yeast.
J. Cell Biol. 2003 Dec; 163(6): 1243-1254
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.  [more]
Model
Original Model: BIOMD0000000297.origin
Submitter: Harish Dharuri
Submission ID: MODEL2504064544
Submission Date: 17 Mar 2008 10:26:57 UTC
Last Modification Date: 08 May 2018 15:14:45 UTC
Creation Date: 18 Apr 2018 14:36:57 UTC
Encoders:  Harish Dharuri
   Vijayalakshmi Chelliah
   Rahuman Sheriff
   Matthieu MAIRE
set #1
bqbiol:hasProperty Mathematical Modelling Ontology MAMO_0000046
set #2
bqbiol:hasProperty Gene Ontology morphogenesis checkpoint
bqbiol:hasTaxon Taxonomy Saccharomyces cerevisiae
bqbiol:isDescribedBy PubMed 14691135
set #3
bqbiol:hasProperty Gene Ontology regulation of cell cycle
Notes

This a model from the article:
Mathematical model of the morphogenesis checkpoint in budding yeast.
Ciliberto A, Novak B, Tyson JJ. J Cell Biol 2003 Dec 22;163(6):1243-54 14691135 ,
Abstract:
The morphogenesis checkpoint in budding yeast delays progression through the cell cycle in response to stimuli that prevent bud formation. Central to the checkpoint mechanism is Swe1 kinase: normally inactive, its activation halts cell cycle progression in G2. We propose a molecular network for Swe1 control, based on published observations of budding yeast and analogous control signals in fission yeast. The proposed Swe1 network is merged with a model of cyclin-dependent kinase regulation, converted into a set of differential equations and studied by numerical simulation. The simulations accurately reproduce the phenotypes of a dozen checkpoint mutants. Among other predictions, the model attributes a new role to Hsl1, a kinase known to play a role in Swe1 degradation: Hsl1 must also be indirectly responsible for potent inhibition of Swe1 activity. The model supports the idea that the morphogenesis checkpoint, like other checkpoints, raises the cell size threshold for progression from one phase of the cell cycle to the next.

This model was taken from the CellML repository and automatically converted to SBML.
The original model was: Ciliberto A, Novak B, Tyson JJ. (2003) - version03
The original CellML model was created by:
Lloyd, Catherine, May
c.lloyd@aukland.ac.nz
The University of Auckland
The Bioengineering Institute

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

Model
Publication ID: 14691135 Submission Date: 17 Mar 2008 10:26:57 UTC Last Modification Date: 08 May 2018 15:14:45 UTC Creation Date: 18 Apr 2018 14:36:57 UTC
Mathematical expressions
Reactions
Clb2_synthesis Modification of Swe1 by Hsl1 Modification of PSwe1 by Hsl1_1 Restoration of Swe1
Restoration of PSwe1 Clb2 phosphorylation PClb2 dephosphorylation Trim phosphorylation
PTrim dephosphorylation Sic1 Degradation Sic1 degradation from Trim complex PTrim_to_PClb2_Cdc28
Swe1 synth PSwe1 deg Swe1M deg PSwe1M deg
Sic1 synthesis Clb2 deg PClb2 deg Trim deg
PTrim deg Trim diss PTrim diss Clb2 Sic1 asso
Plb2 Sic1 asso Cdc20 synth Cdc20 deg Cdc20 degradation
Cln synthesis Cln degradation BE synth BE deg
IE_a degradation Mih1_a to Mih _inactivation Cdc20 inactivation Mcm_a to Mih _disactivation
Mcm_a from Mcm _activation Mih1_a from Mih_activation Cdc20 activation Cdc20 synthesis enhanced by Clb2
Swe1M dephos Swe1M phos Swe1 dephos Swe1 activation by transcriptionnal factor SBF_a
Swe1 degradation Cdh1_a degradation Cdh1 activation SBF_a activation
SBF_a inactivation IE activation by Clb2 Swe1 phos  
Rules
Assignment Rule (variable: Swe1_total) Assignment Rule (variable: BUD) Assignment Rule (variable: Cdh1) Assignment Rule (variable: IE)
Assignment Rule (variable: Mcm) Assignment Rule (variable: Mih1) Assignment Rule (variable: SBF) Assignment Rule (variable: kmih)
Assignment Rule (variable: kswe) Rate Rule (variable: M) Rate Rule (variable: M)  
Physical entities
Compartments Species
cytoplasm Clb2_Cdc28 PClb2_Cdc28 Trim
PTrim Mcm_a Sic1
Mih1_a IE_a Cdc20_a
Cdc20 Cdh1_a Cln_Cdc28
SBF_a Swe1 PSwe1
Swe1M PSwe1M BE
BUD Cdh1 Cdh1_total
IE IE_total Mcm
Mcm_total Mih1 Mih1_total
SBF SBF_total Swe1_total
M    
Global parameters
epsilon Jm ks_clb Ji_mcm
Ja_mcm ki_mcm ka_mcm ks_sic
Ji_mih Ja_mih Vi_mih Va_mih
Ji_ie Ja_ie ki_ie ka_ie
ks_cdc20_1 ks_cdc20_2 Js_cdc20 Ji_cdh
Ja_cdh ki_cdh ka_cdh_1 ki_cdh_1
ka_cdh_2 ks_cln kd_cln Ji_sbf
Ja_sbf ki_sbf_1 ka_sbf_1 ki_sbf_2
ka_sbf_2 ks_swe ks_sweC kd_swe_2
ks_bud kd_bud M mu
Ji_cdc20 Ja_cdc20 ki_cdc20 kd_cdc20
ka_cdc20 khsl1 khsl1r kd_swe_1
Ji_wee Ja_wee Vi_wee Va_wee
kd_clb_1 kd_clb_2 kd_clb_3 kass
kdiss kd_sic kd_sic_1 kd_sic_2
kswe_1 kswe_2 kswe_3 kmih_1
kmih_2 kmih kswe  
Reactions (51)
 
 Clb2_synthesis  → [Clb2_Cdc28];   {Mcm_a} , {M}
 
 Modification of Swe1 by Hsl1 [Swe1] + [BUD] → [Swe1M];  
 
 Modification of PSwe1 by Hsl1_1 [PSwe1] + [BUD] → [PSwe1M];  
 
 Restoration of Swe1 [Swe1M] → [Swe1];  
 
 Restoration of PSwe1 [PSwe1M] → [PSwe1];  
 
 Clb2 phosphorylation [Clb2_Cdc28] → [PClb2_Cdc28];  
 
 PClb2 dephosphorylation [PClb2_Cdc28] → [Clb2_Cdc28];  
 
 Trim phosphorylation [Trim] → [PTrim];  
 
 PTrim dephosphorylation [PTrim] → [Trim];  
 
 Sic1 Degradation [Sic1] → ;   {Cln_Cdc28} , {Clb2_Cdc28}
 
 Sic1 degradation from Trim complex [Trim] → [Clb2_Cdc28];   {Cln_Cdc28} , {Clb2_Cdc28}
 
 PTrim_to_PClb2_Cdc28 [PTrim] → [PClb2_Cdc28];   {Cln_Cdc28} , {Clb2_Cdc28}
 
 Swe1 synth  → [Swe1];  
 
 PSwe1 deg [PSwe1] → ;  
 
 Swe1M deg [Swe1M] → ;  
 
 PSwe1M deg [PSwe1M] → ;  
 
 Sic1 synthesis  → [Sic1];  
 
 Clb2 deg [Clb2_Cdc28] → ;   {Cdh1_a} , {Cdc20_a} , {Clb2_Cdc28}
 
 PClb2 deg [PClb2_Cdc28] → ;   {Cdh1_a} , {Cdc20_a} , {PClb2_Cdc28}
 
 Trim deg [Trim] → [Sic1];   {Cdh1_a} , {Cdc20_a} , {Trim}
 
 PTrim deg [PTrim] → [Sic1];   {Cdh1_a} , {Cdc20_a} , {PTrim}
 
 Trim diss [Trim] → [Sic1] + [Clb2_Cdc28];  
 
 PTrim diss [PTrim] → [Sic1] + [PClb2_Cdc28];  
 
 Clb2 Sic1 asso [Sic1] + [Clb2_Cdc28] → [Trim];  
 
 Plb2 Sic1 asso [Sic1] + [PClb2_Cdc28] → [PTrim];  
 
 Cdc20 synth  → [Cdc20];  
 
 Cdc20 deg [Cdc20] → ;  
 
 Cdc20 degradation [Cdc20_a] → ;  
 
 Cln synthesis  → [Cln_Cdc28];   {SBF_a}
 
 Cln degradation [Cln_Cdc28] → ;  
 
 BE synth  → [BE];   {Cln_Cdc28}
 
 BE deg [BE] → ;  
 
 IE_a degradation  → [IE_a];   {IE_a}
 
 Mih1_a to Mih _inactivation  → [Mih1_a];   {Mih1_a}
 
 Cdc20 inactivation [Cdc20_a] → [Cdc20];   {Cdc20_a}
 
 Mcm_a to Mih _disactivation  → [Mcm_a];   {Mcm_a}
 
 Mcm_a from Mcm _activation  → [Mcm_a];   {Mcm} , {Clb2_Cdc28}
 
 Mih1_a from Mih_activation  → [Mih1_a];   {Mih1} , {Clb2_Cdc28}
 
 Cdc20 activation [Cdc20] → [Cdc20_a];   {Cdc20} , {IE_a}
 
 Cdc20 synthesis enhanced by Clb2  → [Cdc20];   {Clb2_Cdc28}
 
 Swe1M dephos [PSwe1M] → [Swe1M];   {PSwe1M}
 
 Swe1M phos [Swe1M] → [PSwe1M];   {Swe1M} , {Clb2_Cdc28}
 
 Swe1 dephos [PSwe1] → [Swe1];   {PSwe1} , {Clb2_Cdc28}
 
 Swe1 activation by transcriptionnal factor SBF_a  → [Swe1];   {SBF_a}
 
 Swe1 degradation [Swe1] → ;   {Swe1}
 
 Cdh1_a degradation  → [Cdh1_a];   {Cdh1_a} , {Clb2_Cdc28} , {Cln_Cdc28}
 
 Cdh1 activation  → [Cdh1_a];   {Cdh1} , {Cdc20_a}
 
 SBF_a activation  → [SBF_a];   {SBF} , {M} , {Cln_Cdc28}
 
 SBF_a inactivation  → [SBF_a];   {SBF_a} , {Clb2_Cdc28}
 
 IE activation by Clb2  → [IE_a];   {IE} , {Clb2_Cdc28}
 
 Swe1 phos [Swe1] → [PSwe1];   {Swe1} , {Clb2_Cdc28}
 
Rules (11)
 
 Assignment Rule (name: Swe1_total) Swe1_total = PSwe1M+PSwe1+Swe1M+Swe1
 
 Assignment Rule (name: BUD) BUD = piecewise(0, (BE <= 0.6) && (Clb2 < 0.2), 1)
 
 Assignment Rule (name: Cdh1) Cdh1 = Cdh1_total-Cdh1_a
 
 Assignment Rule (name: IE) IE = IE_total-IE_a
 
 Assignment Rule (name: Mcm) Mcm = Mcm_total-Mcm_a
 
 Assignment Rule (name: Mih1) Mih1 = Mih1_total-Mih1_a
 
 Assignment Rule (name: SBF) SBF = SBF_total-SBF_a
 
 Assignment Rule (name: kmih) kmih = kmih_1*Mih1_a+kmih_2*Mih1
 
 Assignment Rule (name: kswe) kswe = kswe_1*Swe1+kswe_2*Swe1M+kswe_3*PSwe1
 
 Rate Rule (name: M_0) d [ M] / d t= mu*M_0
 
 Rate Rule (name: M) d [ M] / d t= mu*M
 
Functions (29)
 
 Function for XClb2 degradation_4 lambda(Cdc20_a, Cdh1_a, PTrim, kd_clb_1, kd_clb_2, kd_clb_3, (kd_clb_1+kd_clb_2*Cdh1_a+kd_clb_3*Cdc20_a)*PTrim)
 
 Function for variation positive_2 lambda(Cln, ks_bud, ks_bud*Cln)
 
 Function for regulation mono and positive_3 lambda(Ja_wee, PSwe1, Va_wee, Va_wee*PSwe1/(Ja_wee+PSwe1))
 
 Function for modification v1_3 lambda(Cdc20, IE_a, Ja_cdc20, ka_cdc20, ka_cdc20*Cdc20*IE_a/(Ja_cdc20+Cdc20))
 
 Function for modification v2 positive_1 lambda(Cdc20_a, Cdh1, Ja_cdh, ka_cdh_1, ka_cdh_2, Cdh1*(ka_cdh_1+ka_cdh_2*Cdc20_a)/(Ja_cdh+Cdh1))
 
 Function for modification v2 negative_1 lambda(Clb2, Ji_sbf, SBF_a, ki_sbf_1, ki_sbf_2, (-SBF_a)*(ki_sbf_1+ki_sbf_2*Clb2)/(Ji_sbf+SBF_a))
 
 Function for regulation mono and negative_2 lambda(Ji_mih, Mih1_a, Vi_mih, (-Vi_mih)*Mih1_a/(Ji_mih+Mih1_a))
 
 Function for modification v3 negative_1 lambda(Cdh1_a, Clb2, Cln, Ji_cdh, ki_cdh, ki_cdh_1, (-Cdh1_a)*(ki_cdh*Clb2+ki_cdh_1*Cln)/(Ji_cdh+Cdh1_a))
 
 Function for variation positive_3 lambda(SBF_a, ks_swe, ks_swe*SBF_a)
 
 Function for regulation mono and positive_1 lambda(Cdc20_a, Ji_cdc20, ki_cdc20, ki_cdc20*Cdc20_a/(Ji_cdc20+Cdc20_a))
 
 Function for XClb2 degradation_1 lambda(Cdc20_a, Cdh1_a, Clb2, kd_clb_1, kd_clb_2, kd_clb_3, (kd_clb_1+kd_clb_2*Cdh1_a+kd_clb_3*Cdc20_a)*Clb2)
 
 Function for activation of Cdc20 by Clb2_1 lambda(Clb2, Js_cdc20, ks_cdc20_2, ks_cdc20_2*Clb2^4/(Js_cdc20^4+Clb2^4))
 
 Function for regulation mono and positive_2 lambda(Ja_wee, PSwe1M, Va_wee, Va_wee*PSwe1M/(Ja_wee+PSwe1M))
 
 Function for _Trim to _Clb2_1 lambda(Clb2, Cln, Trim, kd_sic, kd_sic_1, kd_sic_2, (kd_sic+kd_sic_1*Cln+kd_sic_2*Clb2)*Trim)
 
 Function for _Trim to _Clb2_2 lambda(Clb2, Cln, PTrim, kd_sic, kd_sic_1, kd_sic_2, (kd_sic+kd_sic_1*Cln+kd_sic_2*Clb2)*PTrim)
 
 Function for regulation mono and negative_3 lambda(Ji_mcm, Mcm_a, ki_mcm, (-ki_mcm)*Mcm_a/(Ji_mcm+Mcm_a))
 
 Function for modification v1_6 lambda(Clb2, Ji_wee, Swe1, Vi_wee, Vi_wee*Swe1*Clb2/(Ji_wee+Swe1))
 
 Function for XClb2 degradation_2 lambda(Cdc20_a, Cdh1_a, PClb2, kd_clb_1, kd_clb_2, kd_clb_3, (kd_clb_1+kd_clb_2*Cdh1_a+kd_clb_3*Cdc20_a)*PClb2)
 
 Function for modification v1_1 lambda(Clb2, Ja_mcm, Mcm, ka_mcm, ka_mcm*Mcm*Clb2/(Ja_mcm+Mcm))
 
 Function for modification v1_2 lambda(Clb2, Ja_mih, Mih1, Va_mih, Va_mih*Mih1*Clb2/(Ja_mih+Mih1))
 
 Function for variation positive_1 lambda(SBF_a, ks_cln, ks_cln*SBF_a)
 
 Function for XClb2 degradation_3 lambda(Cdc20_a, Cdh1_a, Trim, kd_clb_1, kd_clb_2, kd_clb_3, (kd_clb_1+kd_clb_2*Cdh1_a+kd_clb_3*Cdc20_a)*Trim)
 
 Function for Clb2 synthesis_1 lambda(Jm, M_0, Mcm_a, epsilon, ks_clb, ks_clb*(epsilon+Mcm_a)*M_0/(1+M_0/Jm))
 
 Function for degradatio of Sic1_1 lambda(Clb2, Cln, Sic1, kd_sic, kd_sic_1, kd_sic_2, (kd_sic+kd_sic_1*Cln+kd_sic_2*Clb2)*Sic1)
 
 Function for regulation mono and negative_1 lambda(IE_a, Ji_ie, ki_ie, (-ki_ie)*IE_a/(Ji_ie+IE_a))
 
 Function for modification v1_4 lambda(Clb2, Ji_wee, Swe1M, Vi_wee, Vi_wee*Swe1M*Clb2/(Ji_wee+Swe1M))
 
 Function for modification v1_5 lambda(Clb2, IE, Ja_ie, ka_ie, ka_ie*IE*Clb2/(Ja_ie+IE))
 
 Function for SBF activation by Cln_2_1 lambda(Cln, Ja_sbf, M_0, SBF, ka_sbf_1, ka_sbf_2, SBF*(ka_sbf_1*M_0+ka_sbf_2*Cln)/(Ja_sbf+SBF))
 
 Constant flux (irreversible) lambda(v, v)
 
 cytoplasm Spatial dimensions: 3.0  Compartment size: 1.0
 
 Clb2_Cdc28
Compartment: cytoplasm
Initial concentration: 0.184
 
 PClb2_Cdc28
Compartment: cytoplasm
Initial concentration: 0.0
 
 Trim
Compartment: cytoplasm
Initial concentration: 0.0839999999999998
 
 PTrim
Compartment: cytoplasm
Initial concentration: 0.0
 
 Mcm_a
Compartment: cytoplasm
Initial concentration: 0.932999999999999
 
 Sic1
Compartment: cytoplasm
Initial concentration: 0.00299999999999999
 
 Mih1_a
Compartment: cytoplasm
Initial concentration: 0.807999999999999
 
 IE_a
Compartment: cytoplasm
Initial concentration: 0.521999999999999
 
 Cdc20_a
Compartment: cytoplasm
Initial concentration: 1.438
 
 Cdc20
Compartment: cytoplasm
Initial concentration: 1.172
 
 Cdh1_a
Compartment: cytoplasm
Initial concentration: 0.992999999999999
 
 Cln_Cdc28
Compartment: cytoplasm
Initial concentration: 0.0539999999999999
 
 SBF_a
Compartment: cytoplasm
Initial concentration: 0.124
 
 Swe1
Compartment: cytoplasm
Initial concentration: 0.0
 
 PSwe1
Compartment: cytoplasm
Initial concentration: 0.0
 
 Swe1M
Compartment: cytoplasm
Initial concentration: 0.018
 
 PSwe1M
Compartment: cytoplasm
Initial concentration: 0.013
 
 BE
Compartment: cytoplasm
Initial concentration: 0.0
 
  BUD
Compartment: cytoplasm
Initial concentration: 0.0
 
  Cdh1
Compartment: cytoplasm
Initial concentration: 0.00700000000000001
 
 Cdh1_total
Compartment: cytoplasm
Initial concentration: 0.999999999999999
Constant
 
  IE
Compartment: cytoplasm
Initial concentration: 0.478
 
 IE_total
Compartment: cytoplasm
Initial concentration: 0.999999999999999
Constant
 
  Mcm
Compartment: cytoplasm
Initial concentration: 0.0669999999999999
 
 Mcm_total
Compartment: cytoplasm
Initial concentration: 0.999999999999999
Constant
 
  Mih1
Compartment: cytoplasm
Initial concentration: 0.192
 
 Mih1_total
Compartment: cytoplasm
Initial concentration: 0.999999999999999
Constant
 
  SBF
Compartment: cytoplasm
Initial concentration: 0.875999999999999
 
 SBF_total
Compartment: cytoplasm
Initial concentration: 0.999999999999999
Constant
 
  Swe1_total
Compartment: cytoplasm
Initial concentration: 0.031
 
 M
Compartment: cytoplasm
Initial concentration: 0.802
 
Global Parameters (67)
 
 epsilon
Value: 0.5   (Units: 1)
Constant
 
 Jm
Value: 10.0   (Units: 1)
Constant
 
 ks_clb
Value: 0.015   (Units: 1/s)
Constant
 
 Ji_mcm
Value: 0.1   (Units: 1)
Constant
 
 Ja_mcm
Value: 0.1   (Units: 1)
Constant
 
 ki_mcm
Value: 0.15   (Units: 1/s)
Constant
 
 ka_mcm
Value: 1.0   (Units: 1/s)
Constant
 
 ks_sic
Value: 0.1   (Units: 1/s)
Constant
 
 Ji_mih
Value: 0.1   (Units: 1)
Constant
 
 Ja_mih
Value: 0.1   (Units: 1)
Constant
 
 Vi_mih
Value: 0.3   (Units: 1/s)
Constant
 
 Va_mih
Value: 1.0   (Units: 1/s)
Constant
 
 Ji_ie
Value: 0.01   (Units: 1)
Constant
 
 Ja_ie
Value: 0.01   (Units: 1)
Constant
 
 ki_ie
Value: 0.04   (Units: 1/s)
Constant
 
 ka_ie
Value: 0.1   (Units: 1/s)
Constant
 
 ks_cdc20_1
Value: 0.005   (Units: 1/s)
Constant
 
 ks_cdc20_2
Value: 0.3   (Units: 1/s)
Constant
 
 Js_cdc20
Value: 0.3   (Units: 1)
Constant
 
 Ji_cdh
Value: 0.01   (Units: 1)
Constant
 
 Ja_cdh
Value: 0.01   (Units: 1)
Constant
 
 ki_cdh
Value: 35.0   (Units: 1/s)
Constant
 
 ka_cdh_1
Value: 1.0   (Units: 1/s)
Constant
 
 ki_cdh_1
Value: 2.0   (Units: 1/s)
Constant
 
 ka_cdh_2
Value: 10.0   (Units: 1/s)
Constant
 
 ks_cln
Value: 0.1   (Units: 1/s)
Constant
 
 kd_cln
Value: 0.1   (Units: 1/s)
Constant
 
 Ji_sbf
Value: 0.01   (Units: 1)
Constant
 
 Ja_sbf
Value: 0.01   (Units: 1)
Constant
 
 ki_sbf_1
Value: 1.0   (Units: 1/s)
Constant
 
 ka_sbf_1
Value: 1.0   (Units: 1/s)
Constant
 
 ki_sbf_2
Value: 2.0   (Units: 1/s)
Constant
 
 ka_sbf_2
Constant
 
 ks_swe
Value: 0.0025   (Units: 1/s)
Constant
 
 ks_sweC
Constant
 
 kd_swe_2
Value: 0.05   (Units: 1/s)
Constant
 
 ks_bud
Value: 0.1   (Units: 1/s)
Constant
 
 kd_bud
Value: 0.1   (Units: 1/s)
Constant
 
 M
Value: 0.802   (Units: 1)
 
 mu
Value: 0.005   (Units: 1/s)
Constant
 
 Ji_cdc20
Value: 0.001   (Units: 1)
Constant
 
 Ja_cdc20
Value: 0.001   (Units: 1)
Constant
 
 ki_cdc20
Value: 0.25   (Units: 1/s)
Constant
 
 kd_cdc20
Value: 0.1   (Units: 1/s)
Constant
 
 ka_cdc20
Value: 1.0   (Units: 1/s)
Constant
 
 khsl1
Value: 1.0   (Units: 1/s)
Constant
 
 khsl1r
Value: 0.01   (Units: 1/s)
Constant
 
 kd_swe_1
Value: 0.007   (Units: 1/s)
Constant
 
 Ji_wee
Value: 0.05   (Units: 1)
Constant
 
 Ja_wee
Value: 0.05   (Units: 1)
Constant
 
 Vi_wee
Value: 1.0   (Units: 1/s)
Constant
 
 Va_wee
Value: 0.3   (Units: 1/s)
Constant
 
 kd_clb_1
Value: 0.015   (Units: 1/s)
Constant
 
 kd_clb_2
Value: 1.0   (Units: 1/s)
Constant
 
 kd_clb_3
Value: 0.1   (Units: 1/s)
Constant
 
 kass
Value: 300.0   (Units: 1/s)
Constant
 
 kdiss
Value: 0.1   (Units: 1/s)
Constant
 
 kd_sic
Value: 0.01   (Units: 1/s)
Constant
 
 kd_sic_1
Value: 1.0   (Units: 1/s)
Constant
 
 kd_sic_2
Value: 3.0   (Units: 1/s)
Constant
 
 kswe_1
Value: 2.0   (Units: 1/s)
Constant
 
 kswe_2
Value: 0.01   (Units: 1/s)
Constant
 
 kswe_3
Value: 0.2   (Units: 1/s)
Constant
 
 kmih_1
Value: 5.0   (Units: 1/s)
Constant
 
 kmih_2
Value: 0.5   (Units: 1/s)
Constant
 
  kmih
Value: 4.136   (Units: 1/s)
 
  kswe
Value: 1.8E-4   (Units: 1/s)
 
Representative curation result(s)
Representative curation result(s) of BIOMD0000000297

Curator's comment: (updated: 13 Jan 2011 13:22:22 GMT)

Figure 3 of the reference publication has been reproduced. The model was integrated and simulated using Copasi v4.6 (Build 32).

Additional file(s)
  • SEDML file:
    Reproduces Figure3 a - d
spacer
spacer