BioModels Database logo

BioModels Database

spacer

BIOMD0000000225 - Westermark2003_Pancreatic_GlycOsc_basic

 

 |   |   |  Send feedback
Reference Publication
Publication ID: 12829470
Westermark PO, Lansner A.
A model of phosphofructokinase and glycolytic oscillations in the pancreatic beta-cell.
Biophys. J. 2003 Jul; 85(1): 126-139
PSCI/SANS, NADA, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden. paal@nada.kth.se  [more]
Model
Original Model: JWS logo
Submitter: Lukas Endler
Submission ID: MODEL5950995486
Submission Date: 25 Jun 2009 18:29:57 UTC
Last Modification Date: 28 May 2014 00:48:24 UTC
Creation Date: 27 Jul 2009 17:50:12 UTC
Encoders:  Lukas Endler
   Vijayalakshmi Chelliah
set #1
bqmodel:isDerivedFrom PubMed 6271617
set #2
bqbiol:hasTaxon Taxonomy Mammalia
set #3
bqbiol:isPartOf KEGG Pathway map00010
set #4
bqbiol:isVersionOf Gene Ontology glycolytic process
Notes

This is the basic model described in eq. 1 of the article:
A model of phosphofructokinase and glycolytic oscillations in the pancreatic beta-cell.
Westermark PO and Lansner A. Biophys J. 2003 Jul;85(1):126-39. PMID: 12829470, doi:10.1016/S0006-3495(03)74460-9
Abstract:
We have constructed a model of the upper part of the glycolysis in the pancreatic beta-cell. The model comprises the enzymatic reactions from glucokinase to glyceraldehyde-3-phosphate dehydrogenase (GAPD). Our results show, for a substantial part of the parameter space, an oscillatory behavior of the glycolysis for a large range of glucose concentrations. We show how the occurrence of oscillations depends on glucokinase, aldolase and/or GAPD activities, and how the oscillation period depends on the phosphofructokinase activity. We propose that the ratio of glucokinase and aldolase and/or GAPD activities are adequate as characteristics of the glucose responsiveness, rather than only the glucokinase activity. We also propose that the rapid equilibrium between different oligomeric forms of phosphofructokinase may reduce the oscillation period sensitivity to phosphofructokinase activity. Methodologically, we show that a satisfying description of phosphofructokinase kinetics can be achieved using the irreversible Hill equation with allosteric modifiers. We emphasize the use of parameter ranges rather than fixed values, and the use of operationally well-defined parameters in order for this methodology to be feasible. The theoretical results presented in this study apply to the study of insulin secretion mechanisms, since glycolytic oscillations have been proposed as a cause of oscillations in the ATP/ADP ratio which is linked to insulin secretion.

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2009 The BioModels Team.
For more information see the terms of use.
To cite BioModels Database, please use Le Novère N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

Model
Publication ID: 12829470 Submission Date: 25 Jun 2009 18:29:57 UTC Last Modification Date: 28 May 2014 00:48:24 UTC Creation Date: 27 Jul 2009 17:50:12 UTC
Mathematical expressions
Reactions
vgk vpfk vfba  
Rules
Assignment Rule (variable: Vgk) Assignment Rule (variable: Vpfk) Assignment Rule (variable: Vfba) Assignment Rule (variable: F6P)
Physical entities
Compartments Species
compartment GLC G6P_F6P F6P
FBP G3P  
Global parameters
Vgk hGK KeqGPI Vpfk
Vfba Sgk Spfk Sfba
Xpfk alpha hx hpfk
hact sigcorr dw_per_ml min_to_sec
Vgk_min Vpfk_min Vfba_min  
Reactions (3)
 
 vgk [GLC] → [G6P_F6P];  
 
 vpfk [G6P_F6P] → [FBP];   {F6P}
 
 vfba [FBP] → [G3P];  
 
Rules (4)
 
 Assignment Rule (name: Vgk) Vgk = Vgk_min*dw_per_ml/min_to_sec
 
 Assignment Rule (name: Vpfk) Vpfk = Vpfk_min*dw_per_ml/min_to_sec
 
 Assignment Rule (name: Vfba) Vfba = Vfba_min*dw_per_ml/min_to_sec
 
 Assignment Rule (name: F6P) F6P = G6P_F6P*KeqGPI/(1+KeqGPI)
 
   compartment Spatial dimensions: 3.0  Compartment size: 1.0
 
 GLC
Compartment: compartment
Initial concentration: 10.0
Constant
 
 G6P_F6P
Compartment: compartment
Initial concentration: 3.71728
 
  F6P
Compartment: compartment
 
 FBP
Compartment: compartment
Initial concentration: 6.3612E-4
 
 G3P
Compartment: compartment
Initial concentration: 0.0
Constant
 
Global Parameters (19)
 
   Vgk
Value: NaN   (Units: mM per sec)
 
   hGK
Value: 1.7   (Units: dimensionless)
Constant
 
   KeqGPI
Value: 0.3   (Units: dimensionless)
Constant
 
   Vpfk
Value: NaN   (Units: mM per sec)
 
   Vfba
Value: NaN   (Units: mM per sec)
 
   Sgk
Value: 8.0   (Units: mM)
Constant
 
   Spfk
Value: 4.0   (Units: mM)
Constant
 
   Sfba
Value: 0.0050   (Units: mM)
Constant
 
   Xpfk
Value: 0.01   (Units: mM)
Constant
 
   alpha
Value: 5.0   (Units: dimensionless)
Constant
 
   hx
Value: 2.5   (Units: dimensionless)
Constant
 
   hpfk
Value: 2.5   (Units: dimensionless)
Constant
 
   hact
Value: 1.0   (Units: dimensionless)
Constant
 
   sigcorr
Value: 1.5
Constant
 
   dw_per_ml
Value: 0.3333   (Units: gramm per ml)
Constant
 
   min_to_sec
Value: 60.0   (Units: dimensionless)
Constant
 
   Vgk_min
Value: 10.0   (Units: mmole per (min kg))
Constant
 
   Vpfk_min
Value: 100.0   (Units: mmole per (min kg))
Constant
 
   Vfba_min
Value: 25.0   (Units: mmole per (min kg))
Constant
 
Representative curation result(s)
Representative curation result(s) of BIOMD0000000225

Curator's comment: (updated: 26 Nov 2009 13:41:11 GMT)

The model reproduces figure 3a of the reference publication. The model was integrated and simulated using Copasi v4.5 (Build 30).

spacer
spacer