E-MTAB-1221 - Transcription profling by array of Docetaxel resistant human prostate cancer cell lines established by exposure to different doses of Docetaxel

Status
Released on 30 June 2013, last updated on 3 May 2014
Organism
Homo sapiens
Samples (7)
Array (1)
Protocols (5)
Description
Docetaxel is used as a standard treatment in patients with metastatic castration-resistant prostate cancer. However, a large subset of patients develops resistance by mechanisms that remain largely unknown. It is thus important to define the relevant pathways implicated in docetaxel-resistance and validate predictive biomarkers that will allow approaches of personalized treatment. In this aim, we established resistant IGR-CaP1 prostate cancer cell lines to different doses of docetaxel (IGR-CaP1-R cell lines) and investigated gene expression profiles by microarray analyses. We generated a signature of 112 genes potentially implicated in docetaxel-resistance whose expression is highly modified (Fold change ≥ 5). Among these genes, significant modification of expression was observed among cell cycle components in the resistant cells. Hence, we focused on the role of the cell cycle regulator LZTS1 located on chromosome 8p which was under-expressed in all our docetaxel-resistant models. LZTS1 extinction was confirmed at the RNA and protein levels. DNA methylation analysis revealed a stretch of 20 highly methylated CpGs in the region encompassing the exon 1 of LZTS1 promoter in the docetaxel-resistant cells suggesting the existence of an epigenetic regulation of LZTS1 expression in the resistant cells. By using siRNA strategy, we found evidence that LZTS1 plays an important role in the acquisition of the resistant phenotype. In addition, immunohistochemical staining showed that LZTS1 protein was absent or down-regulated in 33% of diagnostic biopsies obtained in patients with metastatic castration-resistant prostate cancer. This heterogeneous labeling suggests that LZTS1 might constitute a predictive biomarker of response to docetaxel chemotherapy. Furthermore, as Cdc25C is a LZTS1 partner in the mitosis regulation, we observed that targeting of Cdc25C with the pharmacological Cdc25C inhibitor NSC 663284 specifically killed the docetaxel-resistant cells. These results strongly suggest that Cdc25C plays a role in docetaxel resistance and that Cdc25C might be a therapeutic target to overcome docetaxel resistance. Altogether our findings identify an important role of LZTS1 in developing docetaxel resistance in prostate cancer through its role in regulating phosphatase Cdc25C. The set of gene expression with 4x44K Agilent ( design 014850) correspond to 6 doses of docetaxel 2?5 to 200 ug/ml) in dual color and dye-swap versus the IGR-Cap1 cell line without docetaxel.
Experiment types
transcription profiling by array, dose response, dye swap
Contact
Citation
Targeting CDC25C, PLK1 and CHEK1 to overcome Docetaxel resistance induced by loss of LZTS1 in prostate cancer. Nakouzi NA, Cotteret S, Commo F, Gaudin C, Rajpar S, Dessen P, Vielh P, Fizazi K, Chauchereau A. Oncotarget 5(3):667-678 (2014)
MIAME
PlatformsProtocolsVariablesProcessedRaw
Files
Investigation descriptionE-MTAB-1221.idf.txt
Sample and data relationshipE-MTAB-1221.sdrf.txt
Raw data (1)E-MTAB-1221.raw.1.zip
Processed data (1)E-MTAB-1221.processed.1.zip
Array designA-AGIL-28.adf.txt
Links