E-GEOD-59875 - Transcriptomics of weed stress in soybean

Released on 30 July 2014, last updated on 6 September 2014
Glycine max
Samples (12)
Protocols (4)
Research conducted, including the rationale: Weeds reduce yield in soybeans through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate gR1.fastqing seasons. Methods: RNASeq data were collected from 6 biological samples of soybeans gR1.fastqing with or without weeds. Weed species and the methods to maintain weed free controls varied between years to mitigate treatment effects and to allow detection of general soybeans weed responses. Key results: Soybean plants were not visibly nutrient or water stressed. We identified 55 consistently down-regulated genes in weedy plots. Many of the down-regulated genes were heat shock genes. Fourteen genes were consistently up-regulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the up-regulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. Main conclusion: The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean. Samples were collected from two treatments ("Control" and "Weedy") with six biological replicates (2008, 2009, and twop each for 2010 and 2011) for each treatment.
Experiment type
RNA-seq of coding RNA 
David Horvath, Sharon Clay
Exp. designProtocolsVariablesProcessedSeq. reads
Investigation descriptionE-GEOD-59875.idf.txt
Sample and data relationshipE-GEOD-59875.sdrf.txt