E-GEOD-56505 - Phosphate Starvation in Chlamydomonas reinhardtii

Released on 5 April 2014, last updated on 6 May 2014
Chlamydomonas reinhardtii
Samples (2)
Protocols (4)
Phosphorus (P) is an essential nutrient that is limiting in many environments. When P is scarce organisms employ strategies for conservation of internal stores, and to efficiently scavenge P from their external surroundings. In this study we investigated the acclimation response of Chlamydomonas reinhardtii to P deficiency, comparing the transcriptional profiles of P starved wild-type cells to the P replete condition. RNA was prepared from P-containing or P-deprived logarithmic growth phase cells and subjected to RNA-Seq analysis. During the 24 hours after the imposition of P starvation we observed that from the 407 significantly changing genes (> 2 fold change, corrected p-value < 0.05) in the wild-type 317 genes were up-regulated, in average 8.36-fold, and 90 genes were down-regulated by 3.43-fold, in average. Many of the upregulated genes encoded enzymes involved in specific responses to P starvation, including PHOX, encoding the major secreted alkaline phosphatase, and multiple putative, high-efficiency phosphate transporter genes. More general responses included the up-regulation of genes involved in photoprotective processes (LHCSR3, LHCSR1, LHCBM9, PTOX1) and genes involved in protein modification and degradation. Down-regulated mRNAs indicated an early stage of the reduction of chloroplast ribosomal proteins, which are considered to be a reservoir for P in the cell. Chlamydomonas reinhardtii strain 21 gr (CC1690, wild-type) grown in TAP medium (Harris 1989) in a rotary incubator (200 rpm) at 25 °C in continuous light (70 µmol m-2 s-1). For 24 hours, either 1.1 mM phosphate or 0 mM were provided with the growth media. P deprivation was achieved by washing cells twice in midlogarithmic growth phase with liquid TAP medium without P (TAP-P) and cells were resuspended at a density of 2.5 mg/ml Chlorophyll in TAP or TAP-P. Cell aliquots were collected for mRNA isolation 24 h after being transferred either to TAP or TAP-P medium.
Experiment type
RNA-seq of coding RNA 
Arthur Grossman, Jeffrey Moseley
Exp. designProtocolsFactorsProcessedSeq. reads
Investigation descriptionE-GEOD-56505.idf.txt
Sample and data relationshipE-GEOD-56505.sdrf.txt