E-GEOD-51002 - A genome-wide analysis of open chromatin in human epididymis epithelial cells reveals novel candidate regulatory elements for male infertility [DNase-Seq]

Status
Released on 19 September 2013, last updated on 3 October 2013
Organism
Homo sapiens
Samples (2)
Protocols (4)
Description
The epithelium lining the epididymis has a pivotal role in ensuring a luminal environment that can support normal sperm maturation. Many of the individual genes that encode proteins involved in establishing the epididymal luminal fluid are well characterized. They include ion channels, ion exchangers, transporters and solute carriers. However, the molecular mechanisms that coordinate expression of these genes and modulate their activities in response to biological stimuli are less well understood. To identify cis-regulatory elements for genes expressed in human epididymis epithelial cells we generated genome-wide maps of open chromatin by DNase-seq. This analysis identified 33,542 epididymis-selective DNase I hypersensitive sites (DHS), which were not evident in five cell types of different lineages. Identification of genes with epididymis-selective DHS at their promoters revealed gene pathways that are active in immature epididymis epithelial cells. These include processes correlating with epithelial function and also others with specific roles in the epididymis including retinol metabolism and ascorbate and aldarate metabolism. Peaks of epididymis-selective chromatin were seen in the androgen receptor gene and the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which has a critical role in regulating ion transport across the epididymis epithelium. In silico prediction of transcription factor binding sites that were over-represented in epididymis-selective DHS identified epithelial transcription factors including ELF5 and ELF3, the androgen receptor, Pax2 and Sox9, as components of epididymis transcriptional networks. Active genes, which are targets of each transcription factor, reveal important biological processes in the epididymis epithelium. To identify cis-regulatory elements for genes expressed in human epididymis epithelial cells we generated genome-wide maps of open chromatin by DNase-seq.
Experiment type
ChIP-seq 
Contacts
Ann Harris <geo@ncbi.nlm.nih.gov>, Austin E Gillen, Darin London, Gregory E Crawford, Jared M Bischof, Lingyun Song, Nehal Gosalia, Terrence S Furey
MINSEQE
Exp. designProtocolsFactorsProcessedSeq. reads
Files
Investigation descriptionE-GEOD-51002.idf.txt
Sample and data relationshipE-GEOD-51002.sdrf.txt
Links