E-GEOD-46164 - Dynamic transcriptomes of human myeloid leukemia cells

Released on 9 October 2013, last updated on 25 November 2013
Homo sapiens
Samples (2)
Protocols (3)
To identify the mechanisms controlling chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) in humans, we analyzed genome-wide transcription dynamics in three myeloid leukemia cell lines (K562, HL-60, and THP1) using high-throughput sequencing technology. Using KEGG analysis, we found that the ERK/MAPK, JAK-STAT and ErbB pathways promoted proliferation and metabolism in CML. However, in AML, differentiation and apoptosis blocking resulted in the accumulation of blast cells in marrow. In addition, each cell type had unique characteristics. K562 cells are an ideal model for studying erythroid differentiation and globin gene expression. The chemokine signaling pathway and Fc gamma R-mediated phagocytosis were markedly upregulated in HL-60 cells. In THP1 cells, highly expressed genes ensured strong phagocytosis by monocytes. Further, we provide a new insight into myeloid development. The abundant data sets and well-defined analysis methods will provide a resource and strategy for further investigation of myeloid leukemia. Compare mRNA transcriptomes of three different cell lines
Experiment type
RNA-seq of coding RNA 
yadong yang <yangyd@big.ac.cn>, Songnian Hu, Xiangdong Fang
Dynamic transcriptomes of human myeloid leukemia cells. Wang H, Hu H, Zhang Q, Yang Y, Li Y, Hu Y, Ruan X, Yang Y, Zhang Z, Shu C, Yan J, Wakeland EK, Li Q, Hu S, Fang X. , Europe PMC 23806289
Exp. designProtocolsVariablesProcessedSeq. reads
Investigation descriptionE-GEOD-46164.idf.txt
Sample and data relationshipE-GEOD-46164.sdrf.txt
Processed data (1)E-GEOD-46164.processed.1.zip